Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = RAEGE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 638 KiB  
Article
Thermal Degradation of Carotenoids from Jambu Leaves (Acmella oleracea) during Convective Drying
by Jardilene da Silva Moura, Railson Pontes e Sousa, Luiza Helena da Silva Martins, Carlos Emmerson Ferreira da Costa, Renan Campos Chisté and Alessandra Santos Lopes
Foods 2023, 12(7), 1452; https://doi.org/10.3390/foods12071452 - 29 Mar 2023
Cited by 6 | Viewed by 3162
Abstract
Jambu (Acmella oleracea) is a vegetable used in human food. Drying is an alternative to increase the shelf life of the product. High temperatures can induce the degradation of carotenoids and reduce the health benefits of these compounds. This study investigated the [...] Read more.
Jambu (Acmella oleracea) is a vegetable used in human food. Drying is an alternative to increase the shelf life of the product. High temperatures can induce the degradation of carotenoids and reduce the health benefits of these compounds. This study investigated the effect of the Jambu leaves’ drying temperature on the carotenoid composition. It was performed previously by screening 16 plants from different localities based on the total carotenoid content. The process of drying by convection was carried out at temperatures of 35, 40, 50, and 60 °C in an air circulation oven, at an air velocity of 1.4 m/s−1 and a processing time of ~20 h. The drying data were fitted to six mathematical models and the quantification of the carotenoid retention was determined by HPLC-DAD. The study demonstrates that the carotenoid content among the samples collected from the 16 producers varied by 72% (lower—175 ± 16 μg/g, higher—618 ± 46 μg/g). Among the models, the Page model was found to be the most suitable model to explain the variation of the experimental data. The drying process at 40 °C reduces the Jambu leaves’ carotenoid content significantly (p < 0.05) (All-trans-β-carotene—86 ± 2 μg/g, All-trans-lutein—141 ± 0.2 μg/g) but does not alter the carotenoid profile. The occurrence of similar reduction behavior was observed for the different carotenoids at all the temperatures studied. The drying process at 35 °C was the condition that ensured the highest retention of carotenoids, and also a product classified as a very high source of carotenoids (total carotenoids—748 ± 27 μg/g, vitamin A—17 ± 1 μg RAE/g). Thus, this study concludes that a temperature of 35 °C for 14 h (air velocity—1.4 m/s−1) is the best drying condition for Jambu leaves using a low-cost dryer and as a possibility for the preservation and marketing of this Amazonian raw material. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

19 pages, 5941 KiB  
Article
New Cable Delay Measurement System for VGOS Stations
by Pablo García-Carreño, Javier González-García, María Patino-Esteban, Francisco J. Beltrán-Martínez, Marta Bautista-Durán, Pablo Luis López-Espí and José A. López-Pérez
Sensors 2022, 22(6), 2308; https://doi.org/10.3390/s22062308 - 16 Mar 2022
Viewed by 3206
Abstract
This paper presents the new cable delay measurement system (CDMS) designed at Yebes Observatory (IGN, Spain), which is required for the VLBI Global Observing System (VGOS) stations. This system measures the phase difference between the 5 MHz reference signal from the hydrogen maser [...] Read more.
This paper presents the new cable delay measurement system (CDMS) designed at Yebes Observatory (IGN, Spain), which is required for the VLBI Global Observing System (VGOS) stations. This system measures the phase difference between the 5 MHz reference signal from the hydrogen maser and the 5 MHz signal that reaches the broadband receiver through a coaxial cable, for the generation of calibration tones. As a result, the system detects the changes in the length of that coaxial cable due to temperature variations along the cable run and flexures caused by VGOS radio telescope movements. This CDMS outperforms the previous versions: firstly, it does not require a frequency counter for phase/delay measurements; secondly, it largely reduces the use of digital circuits; hence, reducing digital noise; and thirdly, it has a remotely controlled automatic calibration subsystem. The system was tested in the laboratory and in the radio telescope, and the measurements of both set-ups are shown. These measurements include the total noise, accuracy, hysteresis, and stability. The results in the radio telescope can be correlated with the different factors that affect the cable, such as temperature and flexures. The system allows to achieve an RMS noise of less than 0.5 ps, significantly improving the requirements established in VGOS. The system is currently installed in the Red Atlántica de Estaciones Geodinámicas y Espaciales (RAEGE)Yebes VGOS 13.2 m radio telescope, and will be installed in the Norwegian Mapping Authority (NMA) twin VGOS radio telescopes, in the Finnish Geospatial Research Institute (FGI) VGOS station and in the RAEGE Santa María VGOS radio telescope (Açores, Portugal). Full article
(This article belongs to the Special Issue Monitoring and Understanding the Earth’s Change by Geodetic Methods)
Show Figures

Figure 1

23 pages, 1928 KiB  
Article
Screening for Innovative Sources of Carotenoids and Phenolic Antioxidants among Flowers
by Antonio J. Meléndez-Martínez, Ana Benítez, Mireia Corell, Dolores Hernanz, Paula Mapelli-Brahm, Carla Stinco and Elena Coyago-Cruz
Foods 2021, 10(11), 2625; https://doi.org/10.3390/foods10112625 - 29 Oct 2021
Cited by 14 | Viewed by 3505
Abstract
Flowers have been used for centuries in decoration and traditional medicine, and as components of dishes. In this study, carotenoids and phenolics from 125 flowers were determined by liquid chromatography (RRLC and UHPLC). After comparing four different extractants, the carotenoids were extracted with [...] Read more.
Flowers have been used for centuries in decoration and traditional medicine, and as components of dishes. In this study, carotenoids and phenolics from 125 flowers were determined by liquid chromatography (RRLC and UHPLC). After comparing four different extractants, the carotenoids were extracted with acetone: methanol (2:1), which led to a recovery of 83%. The phenolic compounds were extracted with 0.1% acidified methanol. The petals of the edible flowers Renealmia alpinia and Lantana camara showed the highest values of theoretical vitamin A activity expressed as retinol activity equivalents (RAE), i.e., 19.1 and 4.1 RAE/g fresh weight, respectively. The sample with the highest total phenolic contents was Punica granatum orange (146.7 mg/g dry weight). It was concluded that in most cases, flowers with high carotenoid contents did not contain high phenolic content and vice versa. The results of this study can help to develop innovative concepts and products for the industry. Full article
(This article belongs to the Special Issue Nutraceutical Components of Plants and Plant Seeds)
Show Figures

Graphical abstract

14 pages, 7414 KiB  
Communication
A Tri-Band Cooled Receiver for Geodetic VLBI
by José A. López-Pérez, Félix Tercero-Martínez, José M. Serna-Puente, Beatriz Vaquero-Jiménez, María Patino-Esteban, Pablo García-Carreño, Javier González-García, Óscar García-Pérez, Francisco J. Beltrán-Martínez, Carlos Albo-Castaño, Juan D. Gallego-Puyol, Isaac López-Fernández, Carmen Díez-González, Inmaculada Malo-Gómez, Laura Barbas-Calvo, Pablo de Vicente-Abad and José A. López-Fernández
Sensors 2021, 21(8), 2662; https://doi.org/10.3390/s21082662 - 10 Apr 2021
Cited by 2 | Viewed by 3364
Abstract
This paper shows a simultaneous tri-band (S: 2.2–2.7 GHz, X: 7.5–9 GHz and Ka: 28–33 GHz) low-noise cryogenic receiver for geodetic Very Long Baseline Interferometry (geo-VLBI) which has been developed at Yebes Observatory laboratories in Spain. A special feature is that the whole [...] Read more.
This paper shows a simultaneous tri-band (S: 2.2–2.7 GHz, X: 7.5–9 GHz and Ka: 28–33 GHz) low-noise cryogenic receiver for geodetic Very Long Baseline Interferometry (geo-VLBI) which has been developed at Yebes Observatory laboratories in Spain. A special feature is that the whole receiver front-end is fully coolable down to cryogenic temperatures to minimize receiver noise. It was installed in the first radio telescope of the Red Atlántica de Estaciones Geodinámicas y Espaciales (RAEGE) project, which is located in Yebes Observatory, in the frame of the VLBI Global Observing System (VGOS). After this, the receiver was borrowed by the Norwegian Mapping Autorithy (NMA) for the commissioning of two VGOS radiotelescopes in Svalbard (Norway). A second identical receiver was built for the Ishioka VGOS station of the Geospatial Information Authority (GSI) of Japan, and a third one for the second RAEGE VGOS station, located in Santa María (Açores Archipelago, Portugal). The average receiver noise temperatures are 21, 23, and 25 Kelvin and the measured antenna efficiencies are 70%, 75%, and 60% in S-band, X-band, and Ka-band, respectively. Full article
(This article belongs to the Special Issue Monitoring and Understanding the Earth’s Change by Geodetic Methods)
Show Figures

Figure 1

5 pages, 500 KiB  
Proceeding Paper
Geodetic VLBI Analysis at the National Geographic Institute of Spain
by Víctor Puente, Esther Azcue, Susana García-Espada and Yaiza Gómez-Espada
Proceedings 2019, 19(1), 2; https://doi.org/10.3390/proceedings2019019002 - 12 Jul 2019
Viewed by 1326
Abstract
National Geographic Institute of Spain has a strong background concerning technical aspects of geodetic VLBI. As a step forward in this field, a VLBI analysis team has been set up and tests with different software packages have been carried out. In this sense, [...] Read more.
National Geographic Institute of Spain has a strong background concerning technical aspects of geodetic VLBI. As a step forward in this field, a VLBI analysis team has been set up and tests with different software packages have been carried out. In this sense, two VLBI software packages have been used for experimentation activities in order to compare and validate IGE capability to produce accurate and consistent geodetic products, specifically Earth Orientation Parameters, station coordinates and troposphere delays. The purpose of this contribution is to present the results of these analyses, including some tests to use GNSS-based troposphere delay in VLBI processing and the study of gravitational deformation in Yebes radiotelescope. Full article
(This article belongs to the Proceedings of The II Geomatics Engineering Conference)
Back to TopTop