Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Q235B mild steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5966 KB  
Article
Effect of Nb on Laves Phase Formation and Wear Resistance in Laser-Cladding CrFeNi Medium-Entropy Alloy Coatings
by Zehuan Chen, Fangyan Luo, Hongtao Jin, Zhen Peng, Wenqing Shi and Jiang Huang
Coatings 2025, 15(6), 667; https://doi.org/10.3390/coatings15060667 - 30 May 2025
Cited by 1 | Viewed by 1135
Abstract
In this study, 20 wt.% of Nb was incorporated into a CrFeNi medium-entropy alloy (MEA) powder system to prepare CrFeNi-Nb composite coatings on a Q235B mild steel substrate by laser cladding technology. The effects of Nb addition on the phase composition, microstructure, and [...] Read more.
In this study, 20 wt.% of Nb was incorporated into a CrFeNi medium-entropy alloy (MEA) powder system to prepare CrFeNi-Nb composite coatings on a Q235B mild steel substrate by laser cladding technology. The effects of Nb addition on the phase composition, microstructure, and wear resistance of CrFeNi coatings were systematically investigated. Microstructural characterization revealed that the CrFeNi coating exhibited a single face-centered cubic (FCC) phase structure, while the CrFeNi-Nb composite coating demonstrated a dual-phase structure comprising FCC phase and Laves phase. The Laves phase significantly enhanced the microhardness and wear resistance of the coating. The average microhardness of the CrFeNi-Nb coating increased by 259.62% compared to the substrate and 190.58% compared to the Nb-free CrFeNi coating. The average coefficient of friction (COF) of the coating decreased from 0.74 to 0.68; the wear rate reduced from 5.77 × 10−4 mm3 N−1 m−1 to 2.26 × 10−4 mm3 N−1 m−1; and the weight loss decreased from 10.77 mg to 4.3 mg. The experimental results demonstrated that the addition of Nb promoted the formation of the Laves phase in the CrFeNi MEA, which effectively improved the wear resistance of the coating. Full article
Show Figures

Graphical abstract

16 pages, 8292 KB  
Article
Effect of Polytetrafluoroethylene (PTFE) Content on the Properties of Ni-Cu-P-PTFE Composite Coatings
by Xinghua Liang, Penggui Wu, Lingxiao Lan, Yujiang Wang, Yujuan Ning, Yu Wang and Yunmei Qin
Materials 2023, 16(5), 1966; https://doi.org/10.3390/ma16051966 - 27 Feb 2023
Cited by 10 | Viewed by 3219
Abstract
Q235B mild steel has the advantages of good mechanical properties, welding properties, and low cost, and it is widely used in bridges, energy fields, and marine equipment. However, Q235B low-carbon steel is prone to serious pitting corrosion in urban water and sea water [...] Read more.
Q235B mild steel has the advantages of good mechanical properties, welding properties, and low cost, and it is widely used in bridges, energy fields, and marine equipment. However, Q235B low-carbon steel is prone to serious pitting corrosion in urban water and sea water with high chloride ions (Cl), which restricts its application and development. Herein, to explore the effects of different concentrations of polytetrafluoroethylene (PTFE) on the physical phase composition, the properties of Ni-Cu-P-PTFE composite coatings were studied. The Ni-Cu-P-PTFE composite coatings with PTFE concentrations of 10 mL/L, 15 mL/L, and 20 mL/L were prepared on the surface of Q235B mild steel by the chemical composite plating method. The surface morphology, elemental content distribution, phase composition, surface roughness, Vickers hardness, corrosion current density, and corrosion potential of the composite coatings were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), three-dimensional profile, Vickers hardness, electrochemical impedance spectroscopy (EIS), and Tafel curve test methods. The electrochemical corrosion results showed that the corrosion current density of the composite coating with a PTFE concentration of 10 mL/L in 3.5 wt% NaCl solution was 7.255 × 10−6 A∙cm−2, and the corrosion voltage was −0.314 V. The corrosion current density of the 10 mL/L composite plating was the lowest, the corrosion voltage positive shift was the highest, and the EIS arc diameter of the 10 mL/L composite plating was also the largest, which indicated that the 10 mL/L composite plating had the best corrosion resistance. Ni-Cu-P-PTFE composite coating significantly enhanced the corrosion resistance of Q235B mild steel in 3.5 wt% NaCl solution. This work provides a feasible strategy for an anti-corrosion design of Q235B mild steel. Full article
Show Figures

Figure 1

Back to TopTop