Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Pt(II)-metalloporphyrin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1744 KiB  
Article
New Conjugatable Platinum(II) Chlorins: Synthesis, Reactivity and Singlet Oxygen Generation
by José Almeida, Giampaolo Barone, Luís Cunha-Silva, Ana F. R. Cerqueira, Augusto C. Tomé, Maria Rangel and Ana M. G. Silva
Molecules 2025, 30(12), 2496; https://doi.org/10.3390/molecules30122496 - 6 Jun 2025
Viewed by 421
Abstract
An efficient protocol was developed for the microwave-mediated metallation of 5-(4-methoxycarbonylphenyl)-10,15,20-tris(pentafluorophenyl)porphyrin (P1) with bis(benzonitrile)platinum dichloride salt and subsequent 1,3-dipolar cycloaddition of the resulting PtP1 with an azomethine ylide to give two isomeric metallochlorins: PtC1 (main isomer) and PtC3. The methyl [...] Read more.
An efficient protocol was developed for the microwave-mediated metallation of 5-(4-methoxycarbonylphenyl)-10,15,20-tris(pentafluorophenyl)porphyrin (P1) with bis(benzonitrile)platinum dichloride salt and subsequent 1,3-dipolar cycloaddition of the resulting PtP1 with an azomethine ylide to give two isomeric metallochlorins: PtC1 (main isomer) and PtC3. The methyl ester group of metalloporphyrin PtP1 and metallochlorin PtC1 was successfully hydrolysed in an alkaline medium to yield the corresponding derivatives PtP2 and PtC2 in moderate-to-good yields. As a proof of concept of the reactivity of the carboxy group in PtP2 and PtC2, these compounds were conjugated with a hydroxylated derivative of indomethacin, a known potent non-steroidal anti-inflammatory, obtaining the conjugates PtP2-Ind and PtC2-Ind. The obtained platinum(II) porphyrins and chlorins were characterized by UV-Vis, NMR spectroscopy and mass spectrometry. The structure of PtP1 was also confirmed by X-ray crystallography. Singlet oxygen generation studies were carried out, as well as theoretical calculations, which demonstrated that the prepared Pt(II) complexes can be considered potential photosensitizers for PDT. Full article
(This article belongs to the Section Colorants)
Show Figures

Graphical abstract

15 pages, 3719 KiB  
Article
Novel Platinum-Porphyrin as Sensing Compound for Efficient Fluorescent and Electrochemical Detection of H2O2
by Eugenia Fagadar-Cosma, Nicoleta Plesu, Anca Lascu, Diana Anghel, Maria Cazacu, Catalin Ianasi, Gheorghe Fagadar-Cosma, Ion Fratilescu and Camelia Epuran
Chemosensors 2020, 8(2), 29; https://doi.org/10.3390/chemosensors8020029 - 23 Apr 2020
Cited by 16 | Viewed by 4772
Abstract
Metalloporphyrins are highly recognized for their capacity to act as sensitive substances used in formulation of optical, fluorescent, and electrochemical sensors. A novel compound, namely Pt(II)-5,10,15,20-tetra-(4-allyloxy-phenyl) porphyrin, was synthesized by metalation with PtCl2(PhCN)2 of the corresponding porphyrin base and was [...] Read more.
Metalloporphyrins are highly recognized for their capacity to act as sensitive substances used in formulation of optical, fluorescent, and electrochemical sensors. A novel compound, namely Pt(II)-5,10,15,20-tetra-(4-allyloxy-phenyl) porphyrin, was synthesized by metalation with PtCl2(PhCN)2 of the corresponding porphyrin base and was fully characterized by UV-vis, fluorimetry, FT-IR, 1H-NMR, and 13C-NMR methods. The fluorescence response of this Pt-porphyrin in the presence of different concentrations of hydrogen peroxide was investigated. Besides, modified glassy carbon electrodes with this Pt-porphyrin (Pt-Porf-GCE) were realized and several electrochemical characterizations were comparatively performed with bare glassy carbon electrodes (GCE), in the absence or presence of hydrogen peroxide. The Pt-porphyrin demonstrated to be a successful sensitive material for the detection of hydrogen peroxide both by fluorimetric method in a concentration range relevant for biological samples (1.05–3.9 × 10−7 M) and by electrochemical method, in a larger concentration range from 1 × 10−6 M to 5 × 10−5 M. Based on different methods, this Pt-porphyrin can cover detection in diverse fields, from medical tests to food and agricultural monitoring, proving high accuracy (correlation coefficients over 99%) in both fluorimetric and electrochemical measurements. Full article
Show Figures

Graphical abstract

12 pages, 1958 KiB  
Article
Optical Detection of Bromide Ions Using Pt(II)-5,10,15,20-Tetra-(4-methoxy-phenyl)-porphyrin
by Anca Lascu, Nicoleta Plesu, Diana Anghel, Mihaela Birdeanu, Dana Vlascici and Eugenia Fagadar-Cosma
Chemosensors 2019, 7(2), 21; https://doi.org/10.3390/chemosensors7020021 - 27 Apr 2019
Cited by 9 | Viewed by 5777
Abstract
Bromide ions are present in many environments, such as sedative drugs, methyl-bromide-treated vegetables and seawater. Excess bromide in humans interferes with iodide metabolism and is considered toxic. The need for fast and inexpensive methods for bromide detection is of interest. Spectrophotometric detection methods [...] Read more.
Bromide ions are present in many environments, such as sedative drugs, methyl-bromide-treated vegetables and seawater. Excess bromide in humans interferes with iodide metabolism and is considered toxic. The need for fast and inexpensive methods for bromide detection is of interest. Spectrophotometric detection methods provide accurate and sensitive results. The well-known ability of metalloporphyrins to bind anionic ligands to the central metal ion has been exploited. The changes in the optical properties of Pt(II) 5,10,15,20-tetra(4-methoxy-phenyl)-porphyrin (PtTMeOPP) under the influence of bromide ions allowed us to achieve a fast, simple and reliable UV-vis spectrophotometric method of detection with a detection limit of 2.5 × 10−8 M and a good confidence coefficient: 99.05%. The potential interfering ions, such as Cl, I, NO2, NO3, SCN, SO32−, SO42− and PO43− of 100-fold higher and Cl and R-S of 1000-fold higher concentrations in the mixture as compared to the determined concentration of bromide ions (c = 10−5 M), were tested and did not influence the results. The behavior of the sensitive porphyrin in various pH media was investigated in order to determine their influence upon the bromide detection capacity. Full article
Show Figures

Graphical abstract

19 pages, 6984 KiB  
Article
X-ray Structure Elucidation of a Pt-Metalloporphyrin and Its Application for Obtaining Sensitive AuNPs-Plasmonic Hybrids Capable of Detecting Triiodide Anions
by Eugenia Fagadar-Cosma, Anca Lascu, Sergiu Shova, Mirela-Fernanda Zaltariov, Mihaela Birdeanu, Lilia Croitor, Adriana Balan, Diana Anghel and Serban Stamatin
Int. J. Mol. Sci. 2019, 20(3), 710; https://doi.org/10.3390/ijms20030710 - 7 Feb 2019
Cited by 14 | Viewed by 4480
Abstract
The development of UV–vis spectrophotometric methods based on metalloporphyrins for fast, highly sensitive and selective anion detection, which avoids several of the practical challenges associated with other detection methods, is of tremendous importance in analytical chemistry. In this study, we focused on achieving [...] Read more.
The development of UV–vis spectrophotometric methods based on metalloporphyrins for fast, highly sensitive and selective anion detection, which avoids several of the practical challenges associated with other detection methods, is of tremendous importance in analytical chemistry. In this study, we focused on achieving a selective optical sensor for triiodide ion detection in traces based on a novel hybrid material comprised of Pt(II) 5,10,15,20-tetra(4-methoxy-phenyl)-porphyrin (PtTMeOPP) and gold nanoparticles (AuNPs). This sensor has high relevance in medical physiological tests. The structure of PtTMeOPP was investigated by single crystal X-ray diffraction in order to understand the metal surroundings and the molecule conformation and to assess if it qualifies as a potential sensitive material. It was proven that the Pt-porphyrin generated 1D H-bond supramolecular chains due to the weak C-H···O intermolecular hydrogen bonding. The presence of ordered voids in the crystal encouraged us to use PtTMeOPP as the sensing material for triiodide ion and to enhance its potential in a novel AuNPs/PtTMeOPP hybrid by the synergistic effects provided by the plasmonic gold nanoparticles. The spectrophotometric sensor is characterized by a detection limit of 1.5 × 10−9 M triiodide ion concentration and a remarkable confidence coefficient of 99.98%. Full article
(This article belongs to the Special Issue Biomaterial Application in Sensors)
Show Figures

Graphical abstract

18 pages, 3986 KiB  
Article
Potentiometric Sensors for Iodide and Bromide Based on Pt(II)-Porphyrin
by Dana Vlascici, Nicoleta Plesu, Gheorghe Fagadar-Cosma, Anca Lascu, Mihaela Petric, Manuela Crisan, Anca Belean and Eugenia Fagadar-Cosma
Sensors 2018, 18(7), 2297; https://doi.org/10.3390/s18072297 - 16 Jul 2018
Cited by 32 | Viewed by 5036
Abstract
Pt(II) 5,10,15,20-tetra(4-methoxy-phenyl)-porphyrin (PtTMeOPP) was used in the construction of new ion-selective sensors. The potentiometric response characteristics (slope and selectivity) of iodide and bromide-selective electrodes based on (PtTMeOPP) metalloporphyrin in o-nitrophenyloctylether (NPOE), dioctylphtalate (DOP) and dioctylsebacate (DOS) plasticized poly(vinyl chloride) membranes are compared. [...] Read more.
Pt(II) 5,10,15,20-tetra(4-methoxy-phenyl)-porphyrin (PtTMeOPP) was used in the construction of new ion-selective sensors. The potentiometric response characteristics (slope and selectivity) of iodide and bromide-selective electrodes based on (PtTMeOPP) metalloporphyrin in o-nitrophenyloctylether (NPOE), dioctylphtalate (DOP) and dioctylsebacate (DOS) plasticized poly(vinyl chloride) membranes are compared. The best results were obtained for the membranes plasticized with DOP and NPOE. The sensors have linear responses with near-Nernstian slopes toward bromide and iodide ions and good selectivity. The membrane plasticized with NPOE was electrochemically characterized using the EIS method to determine its water absorption and the diffusion coefficient into the membrane. Full article
(This article belongs to the Special Issue Potentiometric Chemical Sensors)
Show Figures

Graphical abstract

17 pages, 1690 KiB  
Article
Polystyrene Oxygen Optodes Doped with Ir(III) and Pd(II) meso-Tetrakis(pentafluorophenyl)porphyrin Using an LED-Based High-Sensitivity Phosphorimeter
by Alexandre F. De Moraes Filho, Pedro M. Gewehr, Joaquim M. Maia and Douglas R. Jakubiak
Sensors 2018, 18(6), 1953; https://doi.org/10.3390/s18061953 - 15 Jun 2018
Cited by 4 | Viewed by 6653
Abstract
This paper presents a gaseous oxygen detection system based on time-resolved phosphorimetry (time-domain), which is used to investigate O2 optical transducers. The primary sensing elements were formed by incorporating iridium(III) and palladium(II) meso-tetrakis(pentafluorophenyl)porphyrin complexes (IrTFPP-CO-Cl and PdTFPP) in polystyrene (PS) solid [...] Read more.
This paper presents a gaseous oxygen detection system based on time-resolved phosphorimetry (time-domain), which is used to investigate O2 optical transducers. The primary sensing elements were formed by incorporating iridium(III) and palladium(II) meso-tetrakis(pentafluorophenyl)porphyrin complexes (IrTFPP-CO-Cl and PdTFPP) in polystyrene (PS) solid matrices. Probe excitation was obtained using a violet light-emitting diode (LED) (low power), and the resulting phosphorescence was detected by a high-sensitivity compact photomultiplier tube. The detection system performance and the preparation of the transducers are presented along with their optical properties, phosphorescence lifetimes, calibration curves and photostability. The developed lifetime measuring system showed a good signal-to-noise ratio, and reliable results were obtained from the optodes, even when exposed to moderate levels of O2. The new IrTFPP-CO-Cl membranes exhibited room temperature phosphorescence and moderate sensitivity: <τ0>/<τ21%> ratio of ≈6. A typically high degree of dynamic phosphorescence quenching was observed for the traditional indicator PdTFPP: <τ0>/<τ21%> ratio of ≈36. Pulsed-source time-resolved phosphorimetry combined with a high-sensitivity photodetector can offer potential advantages such as: (i) major dynamic range, (ii) extended temporal resolution (Δτ/Δ[O2]) and (iii) high operational stability. IrTFPP-CO-Cl immobilized in polystyrene is a promising alternative for O2 detection, offering adequate photostability and potentially mid-range sensitivity over Pt(II) and Pd(II) metalloporphyrins. Full article
(This article belongs to the Special Issue Luminescence and Chemiluminescence Sensors)
Show Figures

Figure 1

Back to TopTop