Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Pseudoroseovarius crassostreae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 2166 KiB  
Data Descriptor
Genome Analysis of the Marine Bacterium Labrenzia sp. Strain 011, a Potential Protective Agent of Mollusks
by Jamshid Amiri Moghaddam, Antonio Dávila-Céspedes, Mohammad Alanjary, Jochen Blom, Gabriele M. König and Till F. Schäberle
Data 2019, 4(1), 33; https://doi.org/10.3390/data4010033 - 20 Feb 2019
Cited by 2 | Viewed by 4589
Abstract
The marine bacterium Labrenzia sp. strain 011 was isolated from the coastal sediment of Kronsgaard, Germany. The Labrenzia species are suggested to be protective agents of mollusks. Labrenzia sp. strain 011 produces specialized metabolites, which showed activity against a range of microorganisms, thereunder [...] Read more.
The marine bacterium Labrenzia sp. strain 011 was isolated from the coastal sediment of Kronsgaard, Germany. The Labrenzia species are suggested to be protective agents of mollusks. Labrenzia sp. strain 011 produces specialized metabolites, which showed activity against a range of microorganisms, thereunder strong inhibitory effects against Pseudoroseovarius crassostreae DSM 16,950 (genus Roseovarius), the causative agent of oyster disease. The genome of Labrenzia sp. strain 011 was sequenced and assembled into 65 contigs, has a size of 5.1 Mbp, and a G+C content of 61.6%. A comparative genome analysis defined Labrenzia sp. strain 011 as a distinct new species within the genus Labrenzia, whereby 44% of the genome was contributed to the Labrenzia core genome. The genomic data provided here is expected to contribute to a deeper understanding of the mollusk-protective role of Labrenzia spp. Full article
Show Figures

Figure 1

16 pages, 1747 KiB  
Article
Cyclopropane-Containing Fatty Acids from the Marine Bacterium Labrenzia sp. 011 with Antimicrobial and GPR84 Activity
by Jamshid Amiri Moghaddam, Antonio Dávila-Céspedes, Stefan Kehraus, Max Crüsemann, Meryem Köse, Christa E. Müller and Gabriele Maria König
Mar. Drugs 2018, 16(10), 369; https://doi.org/10.3390/md16100369 - 8 Oct 2018
Cited by 32 | Viewed by 8188
Abstract
Bacteria of the family Rhodobacteraceae are widespread in marine environments and known to colonize surfaces, such as those of e.g., oysters and shells. The marine bacterium Labrenzia sp. 011 is here investigated and it was found to produce two cyclopropane-containing medium-chain fatty acids [...] Read more.
Bacteria of the family Rhodobacteraceae are widespread in marine environments and known to colonize surfaces, such as those of e.g., oysters and shells. The marine bacterium Labrenzia sp. 011 is here investigated and it was found to produce two cyclopropane-containing medium-chain fatty acids (1, 2), which inhibit the growth of a range of bacteria and fungi, most effectively that of a causative agent of Roseovarius oyster disease (ROD), Pseudoroseovarius crassostreae DSM 16950. Additionally, compound 2 acts as a potent partial, β-arrestin-biased agonist at the medium-chain fatty acid-activated orphan G-protein coupled receptor GPR84, which is highly expressed on immune cells. The genome of Labrenzia sp. 011 was sequenced and bioinformatically compared with those of other Labrenzia spp. This analysis revealed several cyclopropane fatty acid synthases (CFAS) conserved in all Labrenzia strains analyzed and a putative gene cluster encoding for two distinct CFASs is proposed as the biosynthetic origin of 1 and 2. Full article
(This article belongs to the Special Issue Marine-Derived Polyketides with Antibiotic Activity)
Show Figures

Figure 1

Back to TopTop