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Abstract: The marine bacterium Labrenzia sp. strain 011 was isolated from the coastal sediment
of Kronsgaard, Germany. The Labrenzia species are suggested to be protective agents of mollusks.
Labrenzia sp. strain 011 produces specialized metabolites, which showed activity against a range
of microorganisms, thereunder strong inhibitory effects against Pseudoroseovarius crassostreae DSM
16,950 (genus Roseovarius), the causative agent of oyster disease. The genome of Labrenzia sp. strain
011 was sequenced and assembled into 65 contigs, has a size of 5.1 Mbp, and a G+C content of
61.6%. A comparative genome analysis defined Labrenzia sp. strain 011 as a distinct new species
within the genus Labrenzia, whereby 44% of the genome was contributed to the Labrenzia core
genome. The genomic data provided here is expected to contribute to a deeper understanding of the
mollusk-protective role of Labrenzia spp.

Dataset: This whole-genome shotgun project has been deposited at DDBJ/ENA/GenBank under the
accession no. QCYM00000000. The version described in this paper is the first version, QCYM01000000
(https://www.ncbi.nlm.nih.gov/nuccore/QCYM01000000).

Dataset License: CC0 (databases of molecular data on the NCBI Web site include examples such as
nucleotide sequences (GenBank), protein sequences, macromolecular structures, molecular variation,
gene expression, and mapping data. They are designed to provide and encourage access within the
scientific community to sources of current and comprehensive information. Therefore, NCBI itself
places no restrictions on the use or distribution of the data contained therein).

Keywords: Labrenzia; draft genome; comparative genomics; antimicrobial; oyster disease; Roseovarius
crassostreae

1. Summary

Bacteria of the genus Labrenzia colonize surfaces, such as oyster shells, and may produce antibacterial
compounds, which inhibit the growth of other bacteria [1–4]. Labrenzia sp. strain 011 showed activity
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against the oyster pathogen Roseovarius crassostreae [1]. R. crassostreae has an adverse effect on natural
oyster populations and on oyster farming operations [5]. In addition, strains of the genus Labrenzia, which
produce compounds showing antimicrobial activity, were associated with soft corals and the marine
sponge Erylus discophorus [6,7]. Moreover, an analysis of the available genome of Labrenzia sp. strain
EL143 showed many genes that are linked to the symbiotic relationship with sessile hosts, genes that can
be linked to resistance mechanisms against antibiotics and toxic compounds, and genes corresponding to
a strong dehalogenation potential [8]. This can be regarded as a requirement for filter-feeding organisms
that are exposed to halogenated substances in their environment, and might use bacterial symbionts with
dehalogenase activity for detoxification and nutrition [9]. These reports reflect the importance of Labrenzia
species and their potential for the protection of marine bivalves and for biotechnological applications.
Therefore, the genome of Labrenzia sp. strain 011 will enable the identification of biosynthetic gene
clusters corresponding to protective compounds. The data shown here can be useful for research groups
working on natural product discovery, by enabling further genome-mining approaches.

2. Data Description

The draft genome sequence of Labrenzia sp. strain 011 consists of 65 contigs (>1000 bp) with
5,102,962 bp in length, and a G+C content of 61.6%. There were 4812 coding sequences (CDSs) that
were predicted (this number includes proteins annotated as hypothetical), of which 2280 CDSs (48%)
were categorized in 473 different subsystems with identified functional roles.

A phylogenetic tree of all of the Labrenzia strains with the available genomes based on the core
genomes alignment revealed Labrenzia sp. strain OB1 and L. marina DSM 17,023, which were isolated
from coastal seawater in La Jolla, CA, USA, and South Korea, respectively, as the most closely related
strains to Labrenzia sp. strain 011 (Figure 1).
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Figure 1. Phylogenetic tree of selected Labrenzia strains with available genomes. The tree was build
out of a core of 2131 genes per genome. The geographic origins of the strains are given in parentheses.
The tree was calculated with 100 iterations. All branches have 100/100 bootstrap support, except the
branch between L. aggregate RMAR6 and Labrenzia sp. UBA4493/Labrenzia sp. CP4, which is 61/100.

In order to obtain further insight into the degree of similarity between the analyzed genomes,
the numbers of the core genes and of the singletons were determined. There were 2131 CDS that
contributed to the core genome of the Labrenzia strains, equivalent to ~44% of the Labrenzia sp. strain 011
genome (Figure 2A). To identify the actual core genome of a species, it is possible to use an approximate
approach by extrapolating the number of core genes for an infinite number of genomes [10]. Using
this methodology, it was calculated that the core genome will be around 2113 CDS, based on a decay
function (2929.005 × exp(−x/3.229) + 2112.783, see Figure 2B). The pan genome increases with every
additional Labrenzia strain, indicating an open pan genome of Labrenzia (Heaps’ law function: 5736.13 ×
x0.462, see Figure 2C).
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The average nucleotide identity (ANI) values between Labrenzia sp. strain 011 and all of the
analyzed Labrenzia strains was between 73.55% to 84.85% in the pair-wise sequence comparisons
(Figure 3). This puts the strain only into distant relation to other strains, as values smaller than 80–85%
ANI must be regarded as distantly related [11]. The in-silico DNA–DNA hybridization (isDDH) values
between Labrenzia sp. strain 011 and the other Labrenzia strains was between 22.7% to 33.1%, whereby
the highest values were obtained for Labrenzia sp. strain OB1 and L. marina DSM 17023, verifying
the phylogenetic relationship between these two and strain 011. Furthermore, differences in the G+C
content between Labrenzia sp. strain 011 and other Labrenzia strains were between 1.32–5.38%, which
supports the species delineation (Table 1). Therefore, the in silico parameters (ANI ≥ 96%, isDDH ≥
70%, and difference in G+C content of ≤ 1%) [11–13] define Labrenzia sp. strain 011 as a distinct new
species of the genus Labrenzia (Figure 3, Table 1). Instead, CP4, UBA4493, C1B70, and C1B10 seem to
be strains closely related to L. aggregata RMAR6, with ANI values between 97–100% (Figure 3).
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Figure 3. Average nucleotide identity (ANI) heat map of the selected Labrenzia strains.

Table 1. In silico DNA–DNA hybridization (isDDH) and G+C difference of Labrenzia sp. strain 011 vs.
other Labrenzia strains.

Labrenzia sp. Strain 011 vs. isDDH% G+C Difference%

Labrenzia sp. strain OB1 33.1 2.20
Labrenzia marina 30.2 1.41

Labrenzia sp. strain C1B70 26.7 2.71
Labrenzia sp. strain C1B10 26.7 2.71

Labrenzia sp. strain CP4 26.6 2.52
Labrenzia sp. strain VG12 26.5 1.62

Labrenzia aggregata 26.5 2.57
Labrenzia sp. strainUBA4493 26.3 2.56
Labrenzia sp. strain DG1229 24.8 5.38

Labrenzia alba 24.4 5.25
Labrenzia alexandrii 23.5 5.26
Labrenzia suaedae 22.7 1.32

The genome of Labrenzia sp. strain 011 carries genes related to nitrogen metabolism and
denitrification (56 CDSs), polyhydroxybutyrate metabolism (32 CDSs), and many genes that are
related to stress response, for example, heat and cold shock (169 CDSs) (Figure 4). Labrenzia sp. strain
011 belongs to the family of Rhodobacteraceae, which is a sister family of the Rhizobiales. The latter fix
nitrogen in plant roots [14]. This data may explain the denitrification ability of the oyster microbiome,
which is dominated by Rhodobacteraceae [15]. The bacteria of this family are surface colonizers and are
known for the production of compounds with antibacterial activity, which prohibit the growth of other
bacteria; thereby, shaping the microbiome [15,16].



Data 2019, 4, 33 5 of 8Data 2019, 4, x FOR PEER REVIEW 5 of 8 

 

 

Figure 4. Subsystem category distribution and feature counts in the genome of Labrenzia sp. strain 
011. 

In total, 11 biosynthetic gene clusters (BGCs) were identified (5.3% of the genome), including 
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Figure 4. Subsystem category distribution and feature counts in the genome of Labrenzia sp. strain 011.

In total, 11 biosynthetic gene clusters (BGCs) were identified (5.3% of the genome), including one
type-I polyketide synthase, one terpene, one bacteriocin, four fatty acids, and four saccharide BGCs
(Figure 5). Additionally, 23 putative gene clusters were identified using the cluster finder algorithm
(3.8% of the genome), thereunder three BGCs for cyclopropane fatty acid synthases (Figure 5).
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Figure 5. Distribution of the biosynthetic gene clusters (BGCs) in the genome of Labrenzia sp. strain
011. In total, 463,048 bp (equal to 9.1% of the genome) were identified. The identified regions and
percentages of the total are given.
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3. Methods

3.1. Sequencing and Assembly

The marine bacterium Labrenzia sp. strain 011 was isolated from sediment from the coastal area
of Kronsgaard, Germany. The phenotypic appearance of its colonies is creamy yellow on DifcoTM

marine agar 2216 (Table 2). The genomic DNA isolation of Labrenzia sp. strain 011 was performed as
described before [17]. In brief, a one-week culture in a marine broth liquid medium was used to harvest
the cell pellets. Therefrom, the DNA was isolated using the GenElute™ Bacterial Genomic DNA Kit
(Sigma-Aldrich). Illumina shotgun paired-end sequencing libraries were generated and sequenced on a
MiSeq instrument (Illumina, San Diego, CA, USA). Quality filtering using Trimmomatic version 0.36(6)
resulted in 495,158 paired-end reads for Labrenzia sp. strain 011. The paired-end reads were combined
using the Spades assembler v3.10, yielding initial sequence scaffolds [18]. Scaffolds smaller than 1 kb
were filtered and 65 contigs remained as determined with Quast [19]. The genome completeness was
estimated using CheckM [20] and the genus level marker genes, resulting in a value of 83.2%.

Table 2. Features of Labrenzia sp. strain 011, and MIGS mandatory information.

Items Description

Investigation type Bacteria
Strain Labrenzia sp. 011

Gram stain Negative
Cell shape Rod

Pigmentation Creamy yellow
Temperature optimum 30 ◦C
Latitude and longitude 54.731111 N 9.964167 E

Geographic location name Kronsgaard, Germany
Collection date 15-Aug-2012

Environmental biome M arine biome (ENVO:00000447)
Environmental feature Sea coast (ENVO:00000303)

Environmental material Marine sediment (ENVO_03000033)
Environmental package Surface sediment
Relationship to oxygen Aerobe

Number of replicons 1
Sequencing method Illumina

3.2. Genome Annotation and Comparison

The coding sequences (CDS) of the genome were determined using the RAST prokaryotic genome
annotation server [21]. The annotated GenBank file was uploaded to the EDGAR 2.2 genomic
pipeline [22] for phylogeny and genome comparison. For this analysis, all of the available genome
sequences of the Labrenzia strains were used (accession numbers in parentheses), as follows: L. alexandrii
DFL-11T (ACCU00000000), L. aggregata RMAR6-6 chromosome (CP019630), L. suaedae DSM 22153T

(FRBW00000000), L. alba CECT 5095T (CXWE00000000), Labrenzia sp. strain CP4 (CP011927), Labrenzia
sp. strain VG12 (CP022529), Labrenzia sp. strain DG1229 (AYYG00000000), Labrenzia sp. strain C1B10
(AXBY00000000), Labrenzia sp. strain C1B70 (AXCE00000000), Labrenzia sp. strain OB1 (JSEP00000000),
L. marina DSM 17023T (PPCN00000000), and Labrenzia sp. strain UBA4493 (DGNL00000000). For the in
silico comparison of the strains, the average nucleotide identity (ANI) matrix of all of the conserved
genes in the core genome was computed by the BLAST algorithm using JSpeciesWS [23], and was
visualized as heat map. The in-silico DNA–DNA hybridization (isDDH) was performed based on the
identities/high-scoring segment pairs (HSP) length formula using the DSMZ genome to the genome
distance calculator (GGDC) service tool [12]. The biosynthetic gene clusters (BGCs) for the specialized
metabolites were identified using antiSMASH v4 [24], and default parameters and the incorporation
of the ClusterFinder algorithm were applied.
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