Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Proudman resonance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6072 KiB  
Article
First Open-Coast HF Radar Observations of a 2-Phase Volcanic Tsunami, Tonga 2022
by Belinda Lipa, Donald Barrick, Chad Whelan, Marcel Losekoot and Hardik Parikh
Remote Sens. 2023, 15(9), 2325; https://doi.org/10.3390/rs15092325 - 28 Apr 2023
Cited by 2 | Viewed by 2282
Abstract
We describe results from coastal radar systems that observed anomalous current flows generated by the volcanic eruption in the Tongan archipelago on 15 January 2022 UTC, reporting the first radar detection of a volcanic tsunami. The eruption caused small tsunamis along the western [...] Read more.
We describe results from coastal radar systems that observed anomalous current flows generated by the volcanic eruption in the Tongan archipelago on 15 January 2022 UTC, reporting the first radar detection of a volcanic tsunami. The eruption caused small tsunamis along the western U.S. Coast, generating some damage in a few harbors. The highest tsunami signal in U.S. tide gauge data from the California coast occurred at Arena Cove, with significant heights detected at Port San Luis and Crescent City. We analyze correlated wave orbital velocity detections by High Frequency (HF) radars along the coast between Gerstle Cove and Santa Barbara. Signals observed by the radars indicate that the event had two phases, each with its own distinct genesis: an initial weak surface disturbance, most likely generated by the wave of atmospheric pressure that moved outward from the blast source at just below the speed of sound, followed by a stronger disturbance that arrived approximately 3.5 h later, matching the arrival time for a wave moving entirely through the water from the volcano to the U.S. West Coast. We conclude that this phase consists of a conventional water wave tsunami and weaker waves generated by the pulse. We also report the detection of a small pulse-generated event off the west coast of Florida. Radar observations are compared with water level measurements at nearby tide gauges and a DART buoy, and with observations of barometric pressure. We point out that a Proudman near-resonance at the Tonga Trench is unlikely to explain the second phase observations. Comparison with tide gauge signals at San Francisco, generated by the Krakatoa eruption in 1883, support our conclusions. Full article
Show Figures

Figure 1

17 pages, 4781 KiB  
Article
Tsunamis Generated and Amplified by Atmospheric Pressure Waves Due to an Eruption over Seabed Topography
by Taro Kakinuma
Geosciences 2022, 12(6), 232; https://doi.org/10.3390/geosciences12060232 - 31 May 2022
Cited by 7 | Viewed by 3997
Abstract
Numerical simulations were generated using a nonlinear shallow-water model of velocity potential to study the fundamental processes of tsunami generation and amplification by atmospheric pressure waves. When an atmospheric pressure wave catches up with an existing tsunami that is propagating as a free [...] Read more.
Numerical simulations were generated using a nonlinear shallow-water model of velocity potential to study the fundamental processes of tsunami generation and amplification by atmospheric pressure waves. When an atmospheric pressure wave catches up with an existing tsunami that is propagating as a free wave over an abrupt change in water depth, the amplified tsunami propagates in the shallower water. An existing tsunami propagating as a free wave over a sloping seabed is also amplified by being passed by atmospheric pressure waves. When atmospheric pressure waves travel over an abrupt change in water depth, the water surface profile of tsunamis in the shallower water depends on both the interval of the atmospheric pressure waves and the phase of the tsunami-generation process over the change in water depth. Moreover, when atmospheric pressure waves travel over an abrupt change in water depth, the tsunami amplitude in the shallower water increases, as the water depth of the shallower area is decreased and the Proudman resonance is further reduced. When an atmospheric pressure wave train with positive pressure travels over a sloping seabed, the amplification of tsunami crests propagating as free waves is controlled by leaving the forced water waves following the atmospheric pressure waves. Conversely, the amplitudes of tsunami troughs propagating as free waves increase. Full article
(This article belongs to the Special Issue Interdisciplinary Geosciences Perspectives of Tsunami Volume 4)
Show Figures

Figure 1

16 pages, 6109 KiB  
Article
Propagation of a Meteotsunami from the Yellow Sea to the Korea Strait in April 2019
by Kyungman Kwon, Byoung-Ju Choi, Sung-Gwan Myoung and Han-Seul Sim
Atmosphere 2021, 12(8), 1083; https://doi.org/10.3390/atmos12081083 - 23 Aug 2021
Cited by 7 | Viewed by 3450
Abstract
A meteotsunami with a wave height of 0.1–0.9 m and a period of 60 min was observed at tide gauges along the Korea Strait on 7 April 2019, while a train of two to four atmospheric pressure disturbances with disturbance heights of 1.5–3.9 [...] Read more.
A meteotsunami with a wave height of 0.1–0.9 m and a period of 60 min was observed at tide gauges along the Korea Strait on 7 April 2019, while a train of two to four atmospheric pressure disturbances with disturbance heights of 1.5–3.9 hPa moved eastward from the Yellow Sea to the Korea Strait. Analysis of observational data indicated that isobar lines of the atmospheric pressure disturbances had angles of 75–83° counterclockwise due east and propagated with a velocity of 26.5–31.0 m/s. The generation and propagation process of the meteotsunami was investigated using the Regional Ocean Modeling System. The long ocean waves were amplified due to Proudman resonance in the southwestern Yellow Sea, where the water is deeper than 75 m; here, the long ocean waves were refracted toward the coast on the shallow coastal region of the northern Korea Strait. Refraction and reflection by offshore islands significantly affect the wave heights at the coast. To investigate the effects of an eastward-moving velocity and angle of atmospheric pressure disturbance on the height of a long ocean wave, sensitivity simulations were performed. This result will be useful for the real-time prediction system of meteotsunamis in the Korea Strait. Full article
Show Figures

Figure 1

Back to TopTop