Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Potentilla bifurca

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3439 KiB  
Article
Labile Carbon Input Mitigates the Negative Legacy Effects of Nitrogen Addition on Arbuscular Mycorrhizal Symbiosis in a Temperate Grassland
by Sitong Liu, Yuxiao Zhang, Xiaoqian Yu, Meng Cui, Liangchao Jiang, Tao Zhang and Yingzhi Gao
Plants 2025, 14(3), 456; https://doi.org/10.3390/plants14030456 - 4 Feb 2025
Viewed by 759
Abstract
Nitrogen (N) deposition and carbon (C) addition significantly influence the dynamics of plant–microbe interactions, particularly altering the symbiotic relationship between plants and arbuscular mycorrhizal fungi (AMF). However, the effects and underlying mechanisms of labile C input on the relationship between AMF and various [...] Read more.
Nitrogen (N) deposition and carbon (C) addition significantly influence the dynamics of plant–microbe interactions, particularly altering the symbiotic relationship between plants and arbuscular mycorrhizal fungi (AMF). However, the effects and underlying mechanisms of labile C input on the relationship between AMF and various plant species in a nitrogen-enriched environment remain a knowledge gap. A seven-year field experiment was conducted to examine how six levels of N and three levels of labile C addition impact AMF colonization in four key plant species: Leymus chinensis (Trin. ex Bunge) Tzvelev, Stipa baicalensis Roshev., Thermopsis lanceolata R. Br. and Potentilla bifurca Linn. Our results showed that N and C additions exert significantly different effects on the relationship between AMF and various plant species. Labile C addition mitigated historical N negative effects, particularly for S. baicalensis, enhancing AMF infection and promoting nutrient exchange under high-N and low-C conditions. The relationship between AMF and both L. chinensis and T. lanceolata changed to weak mutualism under low-N and high-C conditions, with significant decreases in vesicular and arbuscular abundance. Plant root stoichiometry plays a critical role in modulating AMF symbiosis, particularly under high-N and -C conditions, as reflected in the increased AMF infection observed in T. lanceolata and P. bifurca. Our findings emphasize the species-specific and nutrient-dependent AMF symbiosis, revealing that targeted C input can mitigate the legacy effects of N enrichment. Effective nutrient management is of crucial importance for ecological restoration efforts in temperate grasslands affected by long-term N enrichment. Full article
(This article belongs to the Special Issue Plant-Soil Microbe Interactions in Ecosystems)
Show Figures

Figure 1

16 pages, 1087 KiB  
Article
Metabolites of Geum aleppicum and Sibbaldianthe bifurca: Diversity and α-Glucosidase Inhibitory Potential
by Nina I. Kashchenko, Daniil N. Olennikov and Nadezhda K. Chirikova
Metabolites 2023, 13(6), 689; https://doi.org/10.3390/metabo13060689 - 25 May 2023
Cited by 8 | Viewed by 2041
Abstract
α-Glucosidase inhibitors are essential in the treatment of diabetes mellitus. Plant-derived drugs are promising sources of new compounds with glucosidase-inhibiting ability. The Geum aleppicum Jacq. and Sibbaldianthe bifurca (L.) Kurtto & T.Erikss. herbs are used in many traditional medical systems to treat diabetes. [...] Read more.
α-Glucosidase inhibitors are essential in the treatment of diabetes mellitus. Plant-derived drugs are promising sources of new compounds with glucosidase-inhibiting ability. The Geum aleppicum Jacq. and Sibbaldianthe bifurca (L.) Kurtto & T.Erikss. herbs are used in many traditional medical systems to treat diabetes. In this study, metabolites of the G. aleppicum and S. bifurca herbs in active growth, flowering, and fruiting stages were investigated using high-performance liquid chromatography with photodiode array and electrospray ionization triple quadrupole mass spectrometric detection (HPLC-PDA-ESI-tQ-MS/MS). In total, 29 compounds in G. aleppicum and 41 components in S. bifurca were identified including carbohydrates, organic acids, benzoic and ellagic acid derivatives, ellagitannins, flavonoids, and triterpenoids. Gemin A, miquelianin, niga-ichigoside F1, and 3,4-dihydroxybenzoic acid 4-O-glucoside were the dominant compounds in the G. aleppicum herb, while guaiaverin, miquelianin, tellimagrandin II2, casuarictin, and glucose were prevailing compounds in the S. bifurca herb. On the basis of HPLC activity-based profiling of the G. aleppicum herb extract, the most pronounced inhibition of α-glucosidase was observed for gemin A and quercetin-3-O-glucuronide. The latter compound and quercetin-3-O-arabinoside demonstrated maximal inhibition of α-glucosidase in the S. bifurca herb extract. The obtained results confirm the prospects of using these plant compounds as possible sources of hypoglycemic nutraceuticals. Full article
Show Figures

Figure 1

18 pages, 4280 KiB  
Article
Transcriptome Analysis Provides Insights into Potentilla bifurca Adaptation to High Altitude
by Xun Tang, Jinping Li, Likuan Liu, Hui Jing, Wenming Zuo and Yang Zeng
Life 2022, 12(9), 1337; https://doi.org/10.3390/life12091337 - 29 Aug 2022
Cited by 11 | Viewed by 2815
Abstract
Potentilla bifurca is widely distributed in Eurasia, including the Tibetan Plateau. It is a valuable medicinal plant in the Tibetan traditional medicine system, especially for the treatment of diabetes. This study investigated the functional gene profile of Potentilla bifurca at different altitudes by [...] Read more.
Potentilla bifurca is widely distributed in Eurasia, including the Tibetan Plateau. It is a valuable medicinal plant in the Tibetan traditional medicine system, especially for the treatment of diabetes. This study investigated the functional gene profile of Potentilla bifurca at different altitudes by RNA-sequencing technology, including de novo assembly of 222,619 unigenes from 405 million clean reads, 57.64% of which were annotated in Nr, GO, KEGG, Pfam, and Swiss-Prot databases. The most significantly differentially expressed top 50 genes in the high-altitude samples were derived from plants that responded to abiotic stress, such as peroxidase, superoxide dismutase protein, and the ubiquitin-conjugating enzyme. Pathway analysis revealed that a large number of DEGs encode key enzymes involved in secondary metabolites, including phenylpropane and flavonoids. In addition, a total of 298 potential genomic SSRs were identified in this study, which provides information on the development of functional molecular markers for genetic diversity assessment. In conclusion, this study provides the first comprehensive assessment of the Potentilla bifurca transcriptome. This provides new insights into coping mechanisms for non-model organisms surviving in harsh environments at high altitudes, as well as molecular evidence for the selection of superior medicinal plants. Full article
(This article belongs to the Special Issue Plant Ecophysiology and Plant Stress Physiology)
Show Figures

Figure 1

12 pages, 1059 KiB  
Article
Resistance and Resilience of Nine Plant Species to Drought in Inner Mongolia Temperate Grasslands of Northern China
by Yuan Miao, Zhenxing Zhou, Meiguang Jiang, Huanhuan Song, Xinyu Yan, Panpan Liu, Minglu Ji, Shijie Han, Anqun Chen and Dong Wang
Appl. Sci. 2022, 12(10), 4967; https://doi.org/10.3390/app12104967 - 14 May 2022
Cited by 2 | Viewed by 2314
Abstract
Drought has been approved to affect the process of terrestrial ecosystems from different organizational levels, including individual, community, and ecosystem levels; however, which traits play the dominant role in the resistance of plant to drought is still unclear. The experiment was conducted in [...] Read more.
Drought has been approved to affect the process of terrestrial ecosystems from different organizational levels, including individual, community, and ecosystem levels; however, which traits play the dominant role in the resistance of plant to drought is still unclear. The experiment was conducted in semi-arid temperate grassland and included six paired control and drought experimental plots. The drought treatment was completely removed from precipitation treatments from 20 June to 30 August 2013. At the end of the growing season in 2013, we removed the rain cover for ecosystem recovery in 2014. The results demonstrated that drought treatment increased the coverage of and abundance Heteropappus altaicus, Potentilla bifurca, and Artemisia scoparia by 126.2–170.0% and 63.4–98.9%, but decreased that of Artemisia frigida, Dontostemon dentatus, and Melissilus ruthenicu by 46.2–60.2% and 49.6–60.1%. No differences in coverage and abundance of Agropyron cristatum, Stipa kiylovii, and Cleistogenes squarrosa were found between control and drought treatment. The coverage and abundance of Stipa kiylovii have exceeded the original level before the drought stress, but Heteropappus altaicus still had not recovered in the first year after the disturbance. Our findings indicate that plant functional traits are important for the understanding of the resistance and resilience of plants to drought stress, which can provide data support for grassland management. Full article
(This article belongs to the Special Issue Frontier in Grassland Ecosystem and Biodiversity)
Show Figures

Figure 1

10 pages, 2264 KiB  
Article
Grazing and Mowing Affect the Carbon-to-Nitrogen Ratio of Plants by Changing the Soil Available Nitrogen Content and Soil Moisture on the Meadow Steppe, China
by Le Wang, Hengkang Xu, Hao Zhang and Yingjun Zhang
Plants 2022, 11(3), 286; https://doi.org/10.3390/plants11030286 - 21 Jan 2022
Cited by 20 | Viewed by 4244
Abstract
Common grassland management practices affect plant and soil element stoichiometry, but the primary environmental factors driving variation in plant C/N ratios for different species in different types of grassland management remain poorly understood. We examined the three dominant C/N stoichiometric responses of plants [...] Read more.
Common grassland management practices affect plant and soil element stoichiometry, but the primary environmental factors driving variation in plant C/N ratios for different species in different types of grassland management remain poorly understood. We examined the three dominant C/N stoichiometric responses of plants to different land uses (moderate grazing and mowing) in the temperate meadow steppe of northern China. Our results showed that the responses of the C/N ratio of dominant plants differed according to the management practice. The relative abundance of N in plant tissues increased due to increased soil NO3, with a consequent decrease in plant C: N in the shoots of Leymus chinensis, but the C/N ratio and nitrogen concentration in the shoots of Bromus inermis and Potentilla bifurca were relatively stable under short-term moderate grazing management. Mowing reduced the concentration of soil NH4+, thus reducing the nitrogen concentration of the roots, resulting in a decrease in the root C/N ratio of Potentilla bifurca. Structural equation model (SEM) showed that the root C/N ratio was affected by both root N and soil inorganic N, while shoot C/N ratio was only affected by the soil inorganic N. Our findings provide a mechanistic understanding of the responses of plant C/N ratio to land use change. The species-level responses of plant stoichiometry to human-managed grasslands deserve more attention. Full article
Show Figures

Figure 1

14 pages, 1501 KiB  
Article
Seed Germination in Alpine Meadow Steppe Plants from Central Tibet in Response to Experimental Warming
by Xiangtao Wang, Ben Niu, Xianzhou Zhang, Yongtao He, Peili Shi, Yanjun Miao, Yanan Cao, Meng Li and Zhipeng Wang
Sustainability 2020, 12(5), 1884; https://doi.org/10.3390/su12051884 - 2 Mar 2020
Cited by 5 | Viewed by 2961
Abstract
Clarifying the effects of climate warming on seed germination is critical for predicting plant community assembly and species renewal, especially in alpine grassland ecosystems where warming is occurring faster than in other biomes globally. We collected matured seeds of 19 common species from [...] Read more.
Clarifying the effects of climate warming on seed germination is critical for predicting plant community assembly and species renewal, especially in alpine grassland ecosystems where warming is occurring faster than in other biomes globally. We collected matured seeds of 19 common species from a typical alpine meadow steppe community in Central Tibet. Seeds were germinated in three incubators with manipulated day-night temperatures to impose three treatments: (1) theoretically optimal values of 25/15 °C, (2) temperatures observed in the field (control), and (3) a warming of 3 °C above the observed temperatures. We calculated seed germination percentage (SGP) and mean germination time (MGT) per species at different treatments. Our results showed that SGPs of Stipa capillacea, Kobresia macrantha, Potentilla saundersiana, Saussurea tibetica, Pedicularis kansuensis, and Androsace graminifolia were higher under the warming treatment than under control. Among them, the MGTs of S. capillacea, K. macrantha, and And. graminifolia were significantly shortened, while the MGT of Pe. kansuensis was significantly lengthened by warming of 3 °C. Significant decreases in MGT induced by warming were only observed for Festuca coelestis and Anaphalis xylorhiza. Additionally, the treatment with theoretically optimal temperatures restrained germination of Stipa purpurea, S. capillacea, F. coelestis, and Sa. tibetica seeds but promoted germination of K. macrantha, Astragalus strictus, P. saundersiana, Potentilla bifurca, Pe. kansuensis, Swertia tetraptera, Pleurospermum hedinii, and And. Graminifolia seeds, when compared with the control and warming treatments. Therefore, the response of seed germination to warming differs among alpine species, implying that future warming could result in significant changes in community assembly of alpine grasslands on the Tibetan Plateau. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

Back to TopTop