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Abstract: Clarifying the effects of climate warming on seed germination is critical for predicting plant
community assembly and species renewal, especially in alpine grassland ecosystems where warming
is occurring faster than in other biomes globally. We collected matured seeds of 19 common species
from a typical alpine meadow steppe community in Central Tibet. Seeds were germinated in three
incubators with manipulated day-night temperatures to impose three treatments: (1) theoretically
optimal values of 25/15 ◦C, (2) temperatures observed in the field (control), and (3) a warming
of 3 ◦C above the observed temperatures. We calculated seed germination percentage (SGP) and
mean germination time (MGT) per species at different treatments. Our results showed that SGPs
of Stipa capillacea, Kobresia macrantha, Potentilla saundersiana, Saussurea tibetica, Pedicularis kansuensis,
and Androsace graminifolia were higher under the warming treatment than under control. Among
them, the MGTs of S. capillacea, K. macrantha, and And. graminifolia were significantly shortened,
while the MGT of Pe. kansuensis was significantly lengthened by warming of 3 ◦C. Significant
decreases in MGT induced by warming were only observed for Festuca coelestis and Anaphalis xylorhiza.
Additionally, the treatment with theoretically optimal temperatures restrained germination of Stipa
purpurea, S. capillacea, F. coelestis, and Sa. tibetica seeds but promoted germination of K. macrantha,
Astragalus strictus, P. saundersiana, Potentilla bifurca, Pe. kansuensis, Swertia tetraptera, Pleurospermum
hedinii, and And. Graminifolia seeds, when compared with the control and warming treatments.
Therefore, the response of seed germination to warming differs among alpine species, implying that
future warming could result in significant changes in community assembly of alpine grasslands on
the Tibetan Plateau.

Keywords: alpine grasslands; climate warming; incubator; germination time; seed germination
percentage; Tibetan Plateau

1. Introduction

Seed germination plays a vital role in the propagation and renewal of plant communities [1], which
represents a predictable ecosystem function in response to changes in biotic and abiotic factors [2,3].
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Generally, seed germination characteristics differ among species. Seeds of some species can germinate
immediately after leaving the parent plant, while for other species seed germination is always delayed
to avoid hostile environmental conditions to increase chances of successful growth, development, and
survival [4,5]. At the community level, variations in seed germination characteristics influence species
co-existence and distributions among microenvironments that are heterogeneous in terms of resource
availability over time or across space [6,7].

In alpine grassland ecosystems, it is generally believed that low temperatures and short growing
seasons result in high seed mortality and low seedling survival [8,9]. This indicates that seed germination
contributes little to vegetation renewal and seedling establishment in an alpine ecosystem [10] because
the process of alpine vegetation renewal is mainly achieved through clonal propagation [11]. Studies
on seedling renewal have also revealed that seedlings germinated from soil seed banks account for
a more substantial proportion of all seedlings and exhibited great variety among ecosystems [12,13].
Therefore, sexual propagation might be vital in the renewal and establishment of alpine plants.

Global air temperatures are predicted to increase by 1.8–4.0 ◦C by 2100 under expected CO2

emission scenarios [14]. Alpine vegetation on the Qinghai-Tibetan Plateau is vulnerable to global
warming [15], partly because the warming speed on this plateau was twice that of the global average
over the past few decades [16,17]. Under climate warming, alpine grasslands are likely to degrade
as permafrost reduction and glacial melting increases [18]. Moreover, changes in soil temperature,
moisture, and nutrient content caused by warming will consequently threaten biodiversity conservation
and sustainable management of alpine pastures on the Qinghai-Tibetan Plateau [19].

Changes in temperature can influence seed germination time in plants [20,21] and can thereby
determine the establishment and survival of seedlings in alpine ecosystems [3,22]. Increasing
temperatures can accelerate the metabolic responses of seeds during germination. Extreme low or high
temperatures will alter cell membrane permeability and restrain catalytic activities [5,23]. For example,
the germination percentage of arctic dwarf shrub seeds was found to increase with warming within
a specific temperature range [24]. Therefore, clarifying the effects of temperature on seed germination is
critical for predicting changes in plant distributions and community assembly and renewal, which will
also be beneficial for sustainable management and conservation of natural ecosystems in the context of
climate change.

In this study, we collected matured seeds of 19 common plant species from a typical alpine
meadow steppe community and investigated the seed germination percentage (SGP) and mean
germination time (MGT) under different incubation temperatures in the Central Tibet. Specifically,
we aimed to test the hypothesis that climate warming enhances seed germination percentage and
shortens mean germination time for alpine grassland species on the Tibetan Plateau. We also wanted to
determine whether there are differences among alpine grassland plants in seed germination responses
to experimental warming.

2. Materials and Methods

2.1. Study Area and Seed Collection

Seeds were collected near to the Damxung Grassland Station located in the southern foothills of
Nyenchen Tanglha (91◦05′ E, 30◦51′ N, 4333 m above sea level), an area characterized by a plateau
semi-arid monsoon climate. The non-growing season is cold and long (from October to April of
the following year), and the growing season is warm and short (from May to September, Figure 1) [25].
The mean annual temperature is 1.3 ◦C and mean annual precipitation is 476.8 mm [26], approximately
80% of which falls in the growing season from June to August (Figure 1). The soil type is alpine
meadow soil with a depth of 50–70 cm and relatively high gravel content [27].

The natural vegetation grazed by yaks close to the Damxung Grassland Station belongs to
a Kobresia-Stipa co-dominant community (Table 1). The most dominant species are Kobresia pygmaea
C. B. Clarke, K. macrantha Bocklr., Stipa purpurea Griseb., and Stipa capillacea Keng [25]. Forb species,
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such as Anaphalis xylorhiza Sch.Bip. ex Hook. f., Leontopodium nanum Hand.-Mazz., Artemisia wellbyi
Hemsl. et Pears. ex Deasy, Astragalus strictus Grah. Ex Bend., and Potentilla bifurca Linn. are also
common in this study area [25]. We collected seeds from the middle of August to the end of September
2017, when the seeds of most plants were mature [28]. In total, we collected seeds from 19 common
species—belonging to 16 genera and 10 families—in the study area (Table 1). At least 1500 seeds were
collected per species. The collected seeds were pre-processed (i.e., glumes and pinnae were removed),
air dried in paper bags, and then stored for more than 6 months in the lab of the Damxung Grassland
Station until germination experiments were carried out. The temperature conditions in the lab (the
average temperature is about −2 ◦C and the temperature ranges from −11 to 12 ◦C) are similar to
the local natural conditions, and it can meet the needs of most seeds for lower temperature conditions
in winter in the alpine region.
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Figure 1. Daily temperature and precipitation during the plant growing seasons recorded from May to
September 2007–2011 at the Damxung Grassland Station. Solid lines represent soil temperatures at
5 cm depth and dash-dotted lines represent air temperature 2 m above the soil surface. Histograms
represent the mean daily precipitation during the five plant growing seasons of 2007–2011.

Table 1. Identification of all species used in the seed germination experiments.

Species Family Functional
Type Abbreviations ‡

Stipa purpurea Griseb. Gramineae Grass S. purpurea
Stipa capillacea Keng Gramineae Grass S. capillacea

Festuca coelestis Krecz. et Bobr. Gramineae Grass F. coelestis
Kobresia pygmaea C. B. Clarke † Cyperaceae Sedge K. pygmaea

Kobresia macrantha Bocklr. Cyperaceae Sedge K. macratha
Oxytropis stracheyana Benth. ex Baker Leguminosae Legume O. stracheyana

Astragalus strictus Grah. Ex Bend. Leguminosae Legume A. strictus
Potentilla saundersiana Royle Rosaceae Forb P. saundersiana

Potentilla bifurca Linn. Rosaceae Forb P. bifurca
Saussurea tibetica C. Winkl. Compositae Forb Sa. tibetica

Leontopodium nanum Hand.-Mazz. Compositae Forb L. nanum
Anaphalis xylorhiza Sch.-Bip. ex Hook. f. Compositae Forb Ana. xylorhiza

Artemisia wellbyi Hemsl. et Pears. ex Deasy Compositae Forb Art. wellbyi
Pedicularis kansuensis Maxim. Scrophulariaceae Forb Pe. kansuensis

Silene waltonii Williams Caryophyllaceae Forb Si. waltonii
Arenaria pulvinata Edgew. Caryophyllaceae Forb Are. pulvinata
Swertia tetraptera Maxim. Gentianaceae Forb Sw. tetraptera

Pleurospermum hedinii Diels Umbelliferae Forb Pl. hedinii
Androsace graminifolia C. E. C. Fisch. Primulaceae Forb And. graminifolia

† Seed germination percentage was too low (less than 5%) to be included in statistical analyses. ‡ Abbreviations
were used where species were referred to in both figures and text.
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2.2. Germination Experiment Design

Seed germination is mainly controlled by the plant growing season temperature (GST), and
increasing temperatures may advantage or disadvantage the seed germination of alpine plant
species [29]. In previous studies of seed germination, experimental temperatures were mainly controlled
to be theoretically optimal (e.g., 20/10 ◦C or 25/15 ◦C for day and night) [3,30–32]. However, neither
natural temperature variations nor the effect of climate warming has been well considered previously.

To fill these knowledge gaps, we set up a seed germination experiment with three treatments
under different manipulated day/night temperatures (see Table 2 for details): (1) theoretically optimal
temperatures of 25/15 ◦C (optimal), (2) real-world temperatures (control) deduced from observations in
the field, and (3) warming of +3 ◦C from the observed temperatures (warming). Four replicates were
performed per treatment. The day/night temperatures in the control treatment were manipulated to
follow the records of the mean soil temperature at the 5 cm depth (Figure 1) taken from the Damxung
Grassland Station with a ten-day time resolution during the plant growing seasons from May 1st to
September 30th, 2007–2011. The air temperate on the Qinghai-Tibetan Plateau is predicted to increase
by approximately 3 ◦C by the end of the 21st century [33]. Therefore, our modelling of this rise based
on the actual observed temperatures could provide information on possible effects on seed gemination
under predictions of future warming. In addition to the three different temperature treatments, the light
within the incubators was also switched on/off every 12 h to simulate photoperiod.

Table 2. Experiment design and manipulated temperatures in seed incubators over
the experiment period.

Incubation Temperature (◦C)

Phase Dates † Control Warming (+3 °C) Optimum

1 1st May–10th May 14.9/9.2 17.9/12.2 25/15
2 11th May–20th May 15.1/9.3 18.1/12.3 25/15
3 21st May–30th May 17.7/12.0 20.7/15.0 25/15
4 31st May–9th June 18.6/12.5 21.6/15.5 25/15
5 10th June–19th June 20.2/14.3 23.2/17.3 25/15
6 20th June–29th June 19.6/13.8 22.6/16.8 25/15
7 30th June–9th July 19.7/14.4 22.7/17.4 25/15
8 10th July–19th July 18.8/14.2 21.8/17.2 25/15
9 20th July–29th July 18.3/14.1 21.3/17.1 25/15
10 30th July–8th August 17.6/13.5 20.6/16.5 25/15
11 9th August–18th August 17.7/13.7 20.7/16.7 25/15
12 19th August–28th August 17.4/13.5 20.4/16.5 25/15
13 29th August–7th September 17.4/13.4 20.4/16.4 25/15
14 8th September–17th September 17.2/12.7 20.2/15.7 25/15
15 18th September–27th September 15.9/11.6 18.9/14.6 25/15

† On the last day of each phase, the number of seeds germinated was recorded, and the germinated seeds and
seedlings were removed from incubators.

2.3. Seed Germination Observation

For each temperature treatment, 100 seeds per species were incubated and replicated four times.
Prior to the germination experiment, seeds were washed 3–5 times with distilled water and then
placed in Petri dishes (90 mm diameter) with two layers of filter paper. The seed germination status
was checked and counted every 10 days, with radicle emergence from the seed coat recorded as
germination [34]. During the germination period, the filter papers were periodically replenished with
distilled water to make sure that water was available throughout the experiment. Seeds that had
already germinated were removed from the Petri dishes after each 10-day check.



Sustainability 2020, 12, 1884 5 of 14

2.4. Calculations of Germination Percentage and Time

The seed germination percentage (SGP) was defined as the proportion of germinated seeds out
of the total number of seeds per replicate under each treatment expressed in percent. After 150 days
(the length of the plant growing season at the Damxung Grassland Station), we calculated SGP and
mean germination time (MGT) for each species (Equation (1)), and the latter was used to determine
the germination speed of alpine grassland plants under different temperature treatments.

MGT =
∑i

1
niti/N, (1)

where ni is the number of seeds that germinated within consecutive intervals of time, ti is the time
between the beginning of the test and the end of a given interval of measurement, and N is the total
number of seeds that germinated (Milbau et al. 2009).

2.5. Statistical Analysis

The data of K. pygmaea were excluded because its SGP was too low—less than 5% in the statistical
analyses. One-way analysis of variance (ANOVA) with the least significant difference (LSD, p < 0.05)
was performed to examine the differences in SGP and MGT between different temperature treatments
in SPSS software (version 22.0; SPSS Inc., Chicago, IL, USA). The normal distribution and variance
equality required by the one-way ANOVA was tested by Shapiro–Wilk and Levene’s test, respectively.
If the test failed, we applied the nonparametric tests to examine the differences in SGP and MGT under
multiple warming treatments.

3. Results

3.1. Seed Germination Percentage

Basing on the test of normal distribution and variance equality, we applied the one-way ANOVA
and nonparametric tests to analyze the differences of SPG under different temperature treatments
(Table 3). The SGPs of Festuca coelestis Krecz. et Bobr., L. nanum, Ana. xylorhiza, Art. wellbyi, Silene
waltonii Williams, and Arenaria pulvinata Edgew. were over 60%. The only significant differences in
SGP between the temperature treatments occurred in F. coelestis, where SGP was approximately 15%
lower under the optimal treatment than under the control or warming treatments (Figure 2).

The SGPs of S. purpurea, S. capillacea, Oxytropis stracheyana Benth. ex Baker, A. strictus, Pedicularis
kansuensis Maxim., and Androsace graminifolia C.E.C. Fisch. were between 20% and 60% (Figure 2).
No significant differences in SGP between the control and warming treatments were found for S.
purpurea, S. capillacea, O. stracheyana, or A. strictus. Compared to the control treatment, the warming
and optimal treatments significantly enhanced the SGPs of Pe. kansuensi by 8% and 14%, respectively.
However, no significant difference in the SGP of Pe. kansuensi was observed between warming and
optimal treatments. In addition, the SGPs of And. graminifolia significantly increased with increasing
temperatures. The SGP of S. capillacea was approximately 4% higher under the warming treatment
compared to the control treatment and 11% lower than under the optimal treatment. The SGP of S.
purpurea under the optimal treatment was approximately 26% lower than that under both the control
and warming treatments.
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Table 3. The hypothetical test (p values) of normal distribution (Shapiro-Wilk; SW) and variance
equality (Levene’s test) in one-way ANOVA under the comparisons of SGP.

Levene’s Test Control_SW Warming_SW Optimal_SW

S. purpurea 0.587 0.240 0.062 0.850
S. capillacea 0.059 0.123 0.850 0.972
F. coelestis 0.123 0.262 0.233 0.976

K. macrantha 0.149 0.683 0.798 0.850
O. stracheyana 0.081 0.850 0.272 0.662

A. strictus 0.457 0.224 0.556 0.272
P. saundersiana 0.241 0.406 0.584 0.962

P. bifurca 0.024 0.024 0.024 0.998
Si. waltonii 0.312 0.024 0.952 0.161

Are. pulvinata 0.002 0.683 0.024 0.513
Sw. tetraptera 0.814 0.734 0.513 0.900

Pl. hedinii 0.274 0.272 0.683 0.577
And. graminifolia 0.314 0.650 0.995 0.850

Pe. kansuensis 0.184 0.911 0.332 0.584
Sa. tibetica 0.674 0.972 0.224 0.406
L. nanum 0.024 0.467 0.683 0.584

Ana. xylorhiza 0.197 0.972 0.332 0.798
Art. wellbyi 0.449 0.899 0.650 0.850
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Figure 2. Comparisons of seed germination percentages (SGPs, %) between different temperature
treatments at the species level. The three treatments were: (1) control (black bars), with real-world
temperatures as observed at the Damxung Grassland Station where the seeds were collected; (2) warming
(red bars), an increase of 3 ◦C from the observed temperatures; and (3) optimal, with the theoretically
optimal temperatures of 25/15 ◦C for day/night time. Different letters denote significant differences
(LSD, p < 0.05). Details of species name abbreviations can be found in Table 1 and the temperature
manipulations during the experimental period in Table 2.
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The SGPs of K. macrantha, Potentilla saundersiana Royle, P. bifurca, Saussurea tibetica C. Winkl.,
Swertia tetraptera Maxim., and Pleurospermum hedinii Diels were less than 20%, with no significant
differences between control and warming treatments observed except for that of Sa. tibetica (Figure 2).
The SGPs of Sw. tetraptera, and Pl. hedinii were approximately 22% and 4% higher under the optimal
treatment than under the control treatment, respectively. Additionally, the SGP of P. bifurca was
approximately 24% higher under the optimal treatment than under the warming treatment. Compared
with that under the control treatment, the SGP of Sa. tibetica was improved by approximately 3%
under the warming treatment and was reduced by approximately 4% under the optimal treatment.
Furthermore, the SGPs of K. macrantha and P. saundersiana were significantly different between the three
treatments and increased along with temperature (from the control to the warming and then the optimal
treatments). The decreasing SGPs under the optimal treatment compared to both the control and
warming treatments observed in S. purpurea, S. capillacea, and F. coelestis suggests that an increase of
more than 3 ◦C would likely result in more significant negative impacts on alpine steppe communities
that are dominated by these plants (Figure 2).

3.2. Mean Germination Time

We examined the normal distribution and variance equality before using the ANOVA test, and
then employed the one-way ANOVA and nonparametric tests to analyze the differences of MGT
under different temperature treatments (Table 4). The MGTs of K. macrantha, O. stracheyana, A. strictus,
P. bifurca, and Pl. hedinii were all longer than 45 days (Figure 3). The MGT of K. macrantha under
the warming treatment was approximately six and ten days shorter than that under the control and
optimal treatments, respectively. However, there was no significant difference in the MGT of K.
macrantha between the warming and optimal treatments. The MGT of Pl. hedinii under the optimal
treatment was approximately ten days longer than those under the control and warming treatments.
In contrast, the MGT of A. strictus under the optimal treatment was approximately six days shorter
relative to the other two treatments.

Table 4. The hypothetical test (p values) of normal distribution (Shapiro-Wilk; SW) and variance
equality (Levene’s test) in one-way ANOVA under the comparisons of mean germination time (MGT).

Levene’s test Control_SW Warming_SW Optimal_SW

S. purpurea 0.787 0.972 0.216 0.103
S. capillacea 0.056 0.272 0.504 0.515
F. coelestis 0.403 0.848 0.187 0.343

K. macrantha 0.201 0.599 0.503 0.030
O. stracheyana 0.843 0.442 0.432 0.420

A. strictus 0.599 0.599 0.609 0.201
P. saundersiana 0.102 0.790 1.000 0.001

P. bifurca 0.074 0.011 0.223 0.318
Si. waltonii 0.013 0.272 0.001 –

Are. pulvinata 0.075 0.272 0.683 –
Sw. tetraptera 0.341 0.079 0.414 0.086

Pl. hedinii 0.738 0.598 0.437 0.431
And. graminifolia 0.380 0.217 0.392 0.610

Pe. kansuensis 0.613 0.605 0.948 0.798
Sa. tibetica 0.040 0.125 0.118 –
L. nanum 0.029 0.272 0.001 –

Ana. xylorhiza 0.248 0.850 0.798 0.272
Art. wellbyi 0.033 0.001 0.972 –
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The MGTs of S. purpurea, S. capillacea, F. coelestis, P. saundersiana, Sa. tibetica, and And. graminifolia
ranged from 15 to 45 days (Figure 3). The MGTs of And. graminifolia under the warming and optimal
treatments were approximately 12 and 15 days shorter than that under the control, respectively. In
addition, with the rising temperatures from the control to warming and then optimal treatments,
the MGTs of S. capillacea, F. coelestis, and And. graminifolia decreased.

The MGTs of L. nanum, Ana. xylorhiza, Art. wellbyi, Pe. kansuensis, Si. waltonii, Are. pulvinata, and
Sw. tetraptera were less than 15 days (Figure 3). The MGT of Pe. kansuensis under the warming treatment
was 2.65 and 2.05 days longer than under the control and optimal treatments, respectively. The MGTs
of Art. Wellbyi and Si. waltonii were approximately one day shorter under the optimal treatment
than those observed under the control treatment; for Sw. tetraptera the MGT was approximately
five days shorter under the optimal treatment. The MGT of Ana. xylorhiza decreased generally with
increasing temperatures.

3.3. Germination Phenological Patterns

At the level of plant functional types, we found that the phenological germination patterns (i.e.,
the trend of accumulated germination percentage) were different among forbs, grasses, sedges, and
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legumes (Figure 4). Approximately 50% of grass species’ seeds germinated within 20 days under both
the control and warming treatments at the beginning of the experiment, which was approximately 20%
higher than that under the optimal treatment at the same time (Figure 4a).
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The seed germination of sedge species was slow, taking approximately 100 days for 8% and 12%
under the control and warming treatments, respectively (Figure 4b). Under optimal temperatures,
the seeds of sedges germinated much faster than that under both the control and warming treatments
(Figure 3b). However, the final SGP of sedges at the end of the experiment was still lower than in
the other three groups (Figures 2–4).

The seeds of legumes germinated slowly and did not show significant differences between
the three treatments (Figure 4c). However, their SGPs were comparable to those of grasses and sedges
under the optimal treatment at the end of the experiments. Most of the forbs’ seeds germinated within
the first forty days (Figure 4d), with their SGPs at the end of the experiment being 61% under optimal,
53% under warming, and 48% under control treatments, respectively.

4. Discussion

In the current study, we wanted to examine possible differences in seed germination among alpine
grassland plants in response to experimental warming. Furthermore, we aimed to test the hypothesis
that climate warming enhances SGP and shortens MGT for alpine grassland species on the Tibetan
Plateau. We found that different incubation temperatures significantly changed seed germination
time and/or germination percentage at both species and functional group levels. In particular, under
the warming scenario of +3 ◦C from real-world temperatures (observed in the field), the seeds of six
species exhibited higher germination percentages than when under current temperature conditions.
The MGTs were shortened for three of these six species and prolonged for the other one species in our
experiments modelling climate warming. Compared to the control treatment, the average germination
times of only two species were shortened when under a climate warming scenario.

4.1. Effects of Warming on Seed Germination of Alpine Grassland Plants

Lower temperatures and shorter growing seasons are the main limiting factors in the survival of
alpine plant seedings [35–37]. Slight changes in these conditions at the beginning and/or end of seed
germination significantly influence seedling renewal. A recent study found that the seed germination of
species adapted to lower temperatures generally requires higher accumulated temperatures (daily mean
over zero or five degrees Celsius) [38]. For instance, plants in the Arctic and Alps regions require higher
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temperatures to avoid early germination risks caused by climate extremes—e.g., frosts [39]. However,
other studies have demonstrated that species adapted to higher elevations can germinate successfully
at lower temperatures [32], and the minimum temperature threshold for their seed germination is
much lower than that for species adapted to warm environments [38,40]. In this study, we found
that most species were able to germinate under the current temperature conditions of the study area
in early May, except for K. pygmaea, which had a low SGP (less than 5%). As the dominant species,
K. pygmaea may have already evolved to reproduce asexually as an adaptation to the cold environment
in Central Tibet. Our results also suggest that temperatures of 14.9/9.2 ◦C (sustained for 10 days) are
sufficiently high for seed germination in alpine grassland plants found in Central Tibet [41] because
over 50% of the species we tested germinated early on in the experiment (within the first 40 days,
Figure 4). The subsequent rainy season (late June to late July) also favored seedling establishment
in these species [10,42] because of the increasing temperatures (Figure 4) and greater availability of
moisture in soils (Figure 1).

The seed germination of alpine meadow steppe plants in Central Tibet is sensitive to temperature
changes. In particular, under the warming scenario of +3 ◦C to real-world temperatures observed
in the field, the SGP and/or MGT of some species notably changed; these changes may affect
the regeneration and establishment of seedlings [43]. Six species showed significant increases in
their SGPs. As temperatures increased, the number of species that showed significant changes in
SGP increased to eleven, indicating that under a warming scenario, the SGP of certain species is
dependent on the magnitude of temperature increase [34]. A previous experiment on dormancy
breaking and germination in dwarf shrub seeds from arctic, alpine, and boreal sites showed that
incubation temperature was positively correlated with SGP [24]. However, the SGPs in this study were
not entirely consistent with the conclusions drawn by Graae and Ejrnaes [24]. Specifically, among all of
the tested species, we only found that K. macrantha, And. graminifolia, and P. saundersiana exhibited
increases in germination percentage with increasing temperatures under the three different treatments.
In contrast, the SGP of Sa. tibetica and S. capillacea decreased with increasing temperatures across
the three temperature treatments.

Milbau et al. (2009) studied the influence of warmer summer temperatures on seed germination
in subarctic species and found that a moderate temperature increase of 2.5 ◦C decreased the MGTs of
more than 80% of the species they tested. In our study, the MGTs of one third of the tested species were
significantly influenced under conditions of simulated temperature increase during the growing season,
with four species exhibiting a significant decrease in MGT and two species exhibiting a significant
increase. The shorter MGT in certain species can favor the rapid occupation and utilization of resources
and continuous expansion of their competitive advantage [5,43,44]. In addition, delayed germination
also signifies that the species may be subjected to exclusion and expulsion in a highly competitive
environment, which may lead to the loss of a favorable ecological niche [45,46].

4.2. Effects of Species Identity on Seed Germination in Alpine Grassland Plants

Unsuitable germination times will cause seedlings to miss the optimum growing period and
significantly reduce the fitness of the species. Many studies have confirmed that when the habitat
or distribution of a species changes, its germination strategy will also change, and can even show
completely different germination characteristics [47,48]. At the community level, variations in
germination strategy among species promotes better use of environmental resources in time and space,
which is conducive to the coexistence of species [49].

Previous studies have shown that seed germination in Stipa is somewhat dependent on alternating
temperatures [31,50]. In this study, the germination percentage of S. purpurea under the warming
and control treatments was higher than when under the optimal treatment; this further supports
the hypothesis that variable temperature conditions promote seed germination in S. purpurea, likely
due to the fact that the seed coat expands, shrinks, and ruptures under the changeable conditions
to allow gas exchange and nutrient transformation within seeds [5,23]. This may also explain why
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higher germination percentages were observed for S. capillacea and F. coelestis under the warming,
rather than optimal, treatment. For O. stracFheyana, neither the SGP or MGT showed responses
to the control, warming, and optimal treatments. It may be possible that germination was mainly
limited by the species dormancy characteristics rather than temperature [51,52]. Moreover, during
the experimental process, mildew development was found in the seeds of Sa. tibetica despite daily
sterilization, which could be a critical factor in germination percentage reduction in the species.

Some plants are capable of both sexual and asexual reproduction, with the preferred mode of
reproduction depending on environmental conditions and genotypes [53]. Estimations of the relative
importance of sexual and vegetative reproduction in Leymus chinensis (Chinese wildrye) grassland in
Inner Mongolia showed that when the population density was low, reproduction was primarily sexual
to quickly allow occupation of the optimal habitats [54]. As a result, the plants overcame the limited
dispersal distances possible under vegetative propagation [55]. In our study, although the germination
percentage of P. bifurca was not sensitive to the warming treatment, it was significantly enhanced with
the optimum treatment when compared with the warming treatment, which indicates that temperature
conditions determine the selection of propagation methods by the species to a certain extent [56,57].
Specifically, P. bifurca has a tendency to select asexual propagation under low temperature stress
conditions, while sexual propagation is favored under high temperature conditions. The combination
of both propagation methods ensures the maintenance of the competitive advantage of P. bifurca in
the varied environments of alpine regions.

In general, studies on germination and emergence of primed grass seeds under field and simulated
field temperature regimes have shown that emergence rates in the field are lower than in the laboratory
(Hardegree and Van Vactor, 2000). Climate warming is likely to cause a series of changes in biotic or
abiotic factors in the natural environment; however, the success or failure of seedling establishment
depends not only on harsh living conditions such as cold, drought, and soil depletion, but also
on the fierce competition with other surrounding plants. Therefore, there are some limitations to
the prediction of seed germination and seedling regeneration using simulated field temperature
experiments. Further research on seed germination should consider a series of biotic and abiotic factors,
including temperature, to provide a more comprehensive prediction of seed germination response and
new patterns of seedling regeneration in a climate warming scenario.

4.3. Implications

The characteristics of seed germination play a key role in determining whether plants can
colonize new habitats and achieve species coexistence at the community level. Therefore, elucidating
the relationship between temperature and seed germination can provide valuable data for the prediction
of future species distributions and changes in community composition and structure in alpine meadow
plants in Central Tibet. In addition, germination time and germination percentage may have effects on
the renewal and restoration of degraded alpine grassland in Central Tibet, especially in some severely
damaged grassland ecosystems. The response of seed germination to temperature is often an essential
reference for the selection of suitable local herbage and the artificial addition of seeds.

5. Conclusions

When compared to the control treatment, the number of species we examined that showed
a significant change in germination percentage as the temperature increased rose from six in the warming
treatment to eleven in the control treatment. Therefore, we deduce that the response of germination
percentage to climate warming in certain species is dependent on the magnitude of temperature increase.
Specifically, under a 3 ◦C increase scenario, S. capillacea, K. macrantha, P. saundersiana, Sa. tibetica, Pe.
kansuensis, and And. graminifolia exhibited higher germination percentages than in the present climate;
among these six species, the mean germination times were shortened for S. capillacea, K. macrantha,
and And. graminifolia in a climate warming scenario. Additionally, compared to the control treatment,
F. coelestis and Ana. xylorhiza also exhibited shorter mean germination times in a climate warming
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scenario. Therefore, we predict that the sexual propagation abilities of these eight species will be
substantially enhanced by a warmer climate. In particular, the renewal of these eight species by
clonal propagation coupled with higher germination percentages and/or faster germination times
will favor the rapid occupation of space and acquisition of resources in harsh living conditions in
alpine meadows.
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