Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Poplar Island

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 17148 KiB  
Article
Quantifying City- and Street-Scale Urban Tree Phenology from Landsat-8, Sentinel-2, and PlanetScope Images: A Case Study in Downtown Beijing
by Hexiang Wang and Fang-Ying Gong
Remote Sens. 2024, 16(13), 2351; https://doi.org/10.3390/rs16132351 - 27 Jun 2024
Cited by 3 | Viewed by 1995
Abstract
Understanding the phenology of urban trees can help mitigate the heat island effect by strategically planting and managing trees to provide shade, reduce energy consumption, and improve urban microclimates. In this study, we carried out the first evaluation of high spatial resolution satellite [...] Read more.
Understanding the phenology of urban trees can help mitigate the heat island effect by strategically planting and managing trees to provide shade, reduce energy consumption, and improve urban microclimates. In this study, we carried out the first evaluation of high spatial resolution satellite images from Landsat-8, Sentinel-2, and PlanetScope images to quantify urban street tree phenology in downtown Beijing. The major research goals are to evaluate the consistency in pixel-level spring–summer growth period phenology and to investigate the capacity of high-resolution satellite observations to distinguish phenological transition dates of urban street trees. At the city scale, Landsat-8, Sentinel-2, and PlanetScope show similar temporal NDVI trends in general. The pixel-level analysis reveals that green-up date consistency is higher in areas with medium (NDVI > 0.5) to high (NDVI > 0.7) vegetation cover when the impacts of urban surfaces on vegetation reflectance are excluded. Similarly, maturity date consistency significantly increases in densely vegetated pixels with NDVI greater than 0.7. At the street scale, this study emphasizes the efficacy of NDVI time series derived from PlanetScope in quantifying the phenology of common street tree genera, including Poplars (Populus), Ginkgos (Ginkgo), Chinese Scholars (Styphnolobium), and Willows (Salix), in downtown Beijing to improve urban vegetation planning. Based on PlanetScope observations, we found that the four street tree genera have unique phenological patterns. Interestingly, we found that the trees along many major streets, where Chinese Scholars are the major tree genus, have later green-up dates than other areas in downtown Beijing. In conclusion, the three satellite observation datasets prove to be effective in monitoring street tree phenology during the spring–summer growth period in Beijing. PlanetScope is effective in monitoring tree phenology at the street scale; however, Landsat-8 may be affected by the mixture of land covers due to its relatively coarse spatial resolution. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Remote Sensing 2023-2025)
Show Figures

Figure 1

14 pages, 4184 KiB  
Article
Dredged Material Decision Tool (DMDT) for Sustainable Beneficial Reuse Applications
by Diana Arreola, Julian Hernandez, Valeria Vesco and Krishna R. Reddy
J. Mar. Sci. Eng. 2022, 10(2), 178; https://doi.org/10.3390/jmse10020178 - 28 Jan 2022
Cited by 3 | Viewed by 3946
Abstract
The Dredged Material Decision Tool (DMDT) was developed by the United States Environmental Protection Agency (USEPA) to allow project managers, stakeholders, and communities to quantify environmental, economic, and social considerations of using dredged material for beneficial purposes. Dredged material may be disposed in [...] Read more.
The Dredged Material Decision Tool (DMDT) was developed by the United States Environmental Protection Agency (USEPA) to allow project managers, stakeholders, and communities to quantify environmental, economic, and social considerations of using dredged material for beneficial purposes. Dredged material may be disposed in a confined disposal facility (CDF); however, this option is unfavorable because of the finite capacity problems these facilities pose. A more sustainable option is to use dredged materials beneficially such as construction material, for habitat restoration, or for brownfield remediation projects. This study demonstrates the applicability of the DMDT to three relevant candidate projects: (1) Dog Beach, Greenwood, and Lee Street Beaches (Evanston, IL, USA); (2) New York-New Jersey Harbor (New York/New Jersey); and (3) Poplar Island (Chesapeake Bay). The DMDT requires the project information and then completion of worksheets with each criteria (biophysical environment, economic, governance, social, and built environment) ranked, weighed, and scored. The DMDT is applied for all potential alternatives and the results are then analyzed to select the best beneficial reuse alternative. It was found that for the beaches in Evanston, the most beneficial option was on-beach placement with hydraulic dredging. The best option for the New Jersey Harbor was found to be using for brownfield and landfill remediation. The best option for Poplar Island was the lateral and vertical expansion of 50% uplands and 50% wetlands. Overall, DMDT is found to be a valuable tool to facilitate the evaluation of multi-criteria based on the project-specific data and help select the best beneficial use alternative for the dredged material. Full article
(This article belongs to the Special Issue Sediment Remediation at Harbour)
Show Figures

Figure 1

19 pages, 9484 KiB  
Article
Seasonality and Characterization Mapping of Restored Tidal Marsh by NDVI Imageries Coupling UAVs and Multispectral Camera
by William Nardin, Yuri Taddia, Michela Quitadamo, Iacopo Vona, Corinne Corbau, Giulia Franchi, Lorie W. Staver and Alberto Pellegrinelli
Remote Sens. 2021, 13(21), 4207; https://doi.org/10.3390/rs13214207 - 20 Oct 2021
Cited by 17 | Viewed by 4350
Abstract
Salt marsh evolution is strongly affected by tidal processes and ecology, which regulate sediment accretion and erosional rates. A balance between marsh erosion and deposition in a restored tidal wetland is crucial for analyzing restoration strategies to adopt in a natural context. Here, [...] Read more.
Salt marsh evolution is strongly affected by tidal processes and ecology, which regulate sediment accretion and erosional rates. A balance between marsh erosion and deposition in a restored tidal wetland is crucial for analyzing restoration strategies to adopt in a natural context. Here, we present an integrated approach monitoring salt marsh seasonal changes over several months in a microtidal restored salt marsh of the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island (MD, USA). The project is undertaken at a restoration site where sediment dredged from the shipping channels in the upper Chesapeake Bay is being used to restore a tidal marsh habitat in mid-Chesapeake Bay. We flew an Unmanned Aerial Vehicle (UAV) with an RGB and a multispectral camera to obtain a high-resolution map of the planimetric position of vegetation and to monitor the health of the marsh vegetation in diverse seasons. Due to its extension of 400 m by 400 m, a total of four flight plans were necessary to cover the entire marsh flying at a 40 m altitude obtaining a 2 cm Ground Sample Distance (GSD). This technique provides reliable results at a very low cost, enabling an accurate assessment of the marsh platforms to be conducted over time, due to both the very high spatial resolution and the precise georeferencing of the images for the comparisons. Our results show seasonal variability in the two dominant species colonizing the low marsh, Spartina alterniflora, and high marsh, Sporobolus pumilus. While the lower marshes showed a higher variability along seasons, the up-land vegetation showed persistent green foliage during cold seasons. Detecting salt marsh evolution and seasonality coupled with field measurements can help to improve the accuracy of hydrodynamic and sediment transport models. Understanding the drivers of salt marsh evolution is vital for informing restoration practices and designs, in order to improve coastal resilience, and develop and coastal management strategies. Full article
Show Figures

Graphical abstract

20 pages, 2501 KiB  
Article
The Fate of Nitrogen in Dredged Material Used for Tidal Marsh Restoration
by Lorie W. Staver, Jeffrey C. Cornwell, Nicholas J. Nidzieko, Kenneth W. Staver, J. Court Stevenson, Michael Owens, Walter Boynton and Leysa Lopez-Gonzalez
J. Mar. Sci. Eng. 2021, 9(8), 849; https://doi.org/10.3390/jmse9080849 - 6 Aug 2021
Cited by 4 | Viewed by 2697
Abstract
Tidal marsh restoration using dredged material is being undertaken in many coastal areas to replace lost habitat and ecosystem services due to tidal marsh loss. The fate of high levels of nitrogen (N) in fine-grained dredged material used as a substrate for marsh [...] Read more.
Tidal marsh restoration using dredged material is being undertaken in many coastal areas to replace lost habitat and ecosystem services due to tidal marsh loss. The fate of high levels of nitrogen (N) in fine-grained dredged material used as a substrate for marsh restoration is uncertain, but if exported tidally may cause subtidal habitat degradation. In this study, a mass balance was developed to characterize N fluxes in a two-year-old restored tidal marsh constructed with fine-grained dredged material at Poplar Island, MD, in Chesapeake Bay, and to evaluate the potential impact on the adjacent submersed aquatic vegetation (SAV) habitat. Denitrification and N accumulation in Spartina organic matter were identified as the major sinks (21.31 and 28.5 mg N m−2 d−1, respectively), while tidal export of TN was more modest (9.4 mg N m−2 d−1) and inorganic N export was low (1.59 mg N m−2 d−1). Internal cycling helped retain N within the marsh. Mineralization of N associated with labile organic matter in the dredged material was likely a large, but unquantified, source of N supporting robust plant growth and N exports. Exceedances of SAV water quality habitat requirements in the subtidal region adjacent to the marsh were driven by elevated Chesapeake Bay concentrations rather than enrichment by the marsh. Full article
Show Figures

Figure 1

20 pages, 18295 KiB  
Article
High-Resolution Monitoring of Tidal Systems Using UAV: A Case Study on Poplar Island, MD (USA)
by Yuri Taddia, Alberto Pellegrinelli, Corinne Corbau, Giulia Franchi, Lorie W. Staver, John Court Stevenson and William Nardin
Remote Sens. 2021, 13(7), 1364; https://doi.org/10.3390/rs13071364 - 2 Apr 2021
Cited by 30 | Viewed by 3932
Abstract
Tidal processes regulating sediment accretion rates and vegetated platform erosion in tidal systems strongly affect salt marsh evolution. A balance between erosion and deposition in a restored salt marsh is crucial for analyzing restoration strategies to be adopted within a natural context. Marsh [...] Read more.
Tidal processes regulating sediment accretion rates and vegetated platform erosion in tidal systems strongly affect salt marsh evolution. A balance between erosion and deposition in a restored salt marsh is crucial for analyzing restoration strategies to be adopted within a natural context. Marsh morphology is also coupled with tidal mudflats and channel networks and this makes micro-tidal systems crucial for a detailed assessment of restoration interventions. Here, we present a methodological approach for monitoring channel morphodynamics and vegetation variations over a time frame of six years in a low tidal energy salt marsh of the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island (Maryland, USA). The project is a restoration site where sediment dredged from the shipping channels in the upper Chesapeake Bay is used to restore a tidal marsh habitat in mid-Chesapeake Bay. Aerial surveys with an Unmanned Aerial Vehicle (UAV) have been performed for the high-resolution mapping of a small tidal system. Flight missions were planned to obtain a Ground Sample Distance (GSD) of 2 cm. Structure-from-Motion (SfM) and Multi-View-Stereo (MVS) algorithms have been used to reconstruct the 3D geometry of the site. The mapping of channel morphology and an elevation assessment on the mudflat were performed using orthomosaics, Digital Terrain Models (DTMs) and GNSS survey. The results highlight that the workflow adopted in this pilot work is suitable to assess the geomorphological evolution over time in a micro-tidal system. However, issues were encountered for salt marsh due to the presence of dense vegetation. The UAV-based photogrammetry approach with GNSS RTK ground surveys can hence be replicated in similar sites all over the world to evaluate restoration interventions and to develop new strategies for a better management of existing shorelines. Full article
(This article belongs to the Special Issue UAV for High-Resolution Salt Marsh Monitoring)
Show Figures

Graphical abstract

32 pages, 1848 KiB  
Article
Mediterranean Propolis from the Adriatic Sea Islands as a Source of Natural Antioxidants: Comprehensive Chemical Biodiversity Determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP Assay
by Lidija Svečnjak, Zvonimir Marijanović, Piotr Okińczyc, Piotr Marek Kuś and Igor Jerković
Antioxidants 2020, 9(4), 337; https://doi.org/10.3390/antiox9040337 - 20 Apr 2020
Cited by 68 | Viewed by 8157
Abstract
There is no systematic report about propolis chemical biodiversity from the Adriatic Sea islands affecting its antioxidant capacity. Therefore, the samples from the islands Krk, Rab, Pag, Biševo and Korčula were collected. Comprehensive methods were used to unlock their chemical biodiversity: headspace solid-phase [...] Read more.
There is no systematic report about propolis chemical biodiversity from the Adriatic Sea islands affecting its antioxidant capacity. Therefore, the samples from the islands Krk, Rab, Pag, Biševo and Korčula were collected. Comprehensive methods were used to unlock their chemical biodiversity: headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) followed by gas chromatography and mass spectrometry (GC-MS); Fourier transform mid-infrared spectroscopy (FT-MIR); ultra high performance liquid chromatography with diode array detector and quadrupole time-of-flight mass spectrometry (UHPLC-DAD-QqTOF-MS) and DPPH and FRAP assay. The volatiles variability enabled differentiation of the samples in 2 groups of Mediterranean propolis: non-poplar type (dominated by α-pinene) and polar type (characterized by cadinane type sesquiterpenes). Spectral variations (FT-MIR) associated with phenolics and other balsam-related components were significant among the samples. The UHPLC profiles allowed to track compounds related to the different botanical sources such as poplar (pinobanksin esters, esters and glycerides of phenolic acids, including prenyl derivatives), coniferous trees (labdane, abietane diterpenes) and Cistus spp. (clerodane and labdane diterpenes, methylated myricetin derivatives). The antioxidant potential determined by DPPH ranged 2.6–81.6 mg GAE/g and in FRAP assay 0.1–0.8 mmol Fe2+/g. The highest activity was observed for the samples of Populus spp. origin. The antioxidant potential and phenolic/flavonoid content was positively, significantly correlated. Full article
(This article belongs to the Special Issue Bee Products as a Source of Natural Antioxidants)
Show Figures

Figure 1

Back to TopTop