Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Peusner’s network thermodynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 10376 KiB  
Article
R Version of the Kedem–Katchalsky–Peusner Equations for Liquid Interface Potentials in a Membrane System
by Andrzej Ślęzak and Sławomir M. Grzegorczyn
Entropy 2025, 27(2), 169; https://doi.org/10.3390/e27020169 - 6 Feb 2025
Viewed by 636
Abstract
Peusner’s network thermodynamics (PNT) is an important way of describing processes in nonequilibrium thermodynamics. PNT allows energy transport and conversion processes in membrane systems to be described. This conversion concerns internal energy transformation into free and dissipated energies linked with the membrane transport [...] Read more.
Peusner’s network thermodynamics (PNT) is an important way of describing processes in nonequilibrium thermodynamics. PNT allows energy transport and conversion processes in membrane systems to be described. This conversion concerns internal energy transformation into free and dissipated energies linked with the membrane transport of solutes. A transformation of the Kedem–Katchalsky (K-K) equations into the R variant of Kedem–Katchalsky–Peusner (K-K-P) equations was developed for the transport of binary electrolytic solutions through a membrane. The procedure was verified for a system in which a membrane Ultra Flo 145 Dialyser separated aqueous NaCl solutions. Peusner coefficients were calculated by the transformation of the K-K coefficients. Next, the coupling coefficients of the membrane processes and energy fluxes for electrolyte solutions transported through the membrane were calculated based on the Peusner coefficients. The efficiency of energy conversion in the membrane transport processes was estimated, and this coefficient increased nonlinearly with the increase in the solute concentration in the membrane. In addition, the energy fluxes as functions of ionic current density for constant solute fluxes were also investigated for membrane transport processes in the Ultra Flo 145 Dialyser membrane. Full article
(This article belongs to the Special Issue Thermodynamic Modelling in Membrane, 2nd Edition)
Show Figures

Figure 1

16 pages, 9231 KiB  
Article
Network Derivation of Liquid Junction Potentials in Single-Membrane System
by Andrzej Ślęzak and Sławomir M. Grzegorczyn
Membranes 2024, 14(6), 140; https://doi.org/10.3390/membranes14060140 - 13 Jun 2024
Cited by 2 | Viewed by 1190
Abstract
Peusner’s network thermodynamics (PNT) is one of the more important formalisms of nonequilibrium thermodynamics used to describe membrane transport and the conversion of the internal energy of the system into energy dissipated in the environment and free energy used for the work involved [...] Read more.
Peusner’s network thermodynamics (PNT) is one of the more important formalisms of nonequilibrium thermodynamics used to describe membrane transport and the conversion of the internal energy of the system into energy dissipated in the environment and free energy used for the work involved in the transport of solution components in membrane processes. A procedure of transformation the Kedem–Katchalsky (K-K) equations for the transport of binary electrolytic solutions through a membrane to the Kedem–Katchalsky–Peusner (K-K-P) equations based on the PNT formalism for liquid junction potentials was developed. The subject of the study was a membrane used for hemodialysis (Ultra Flo 145 Dialyser) and aqueous NaCl solutions. The research method was the L version of the K-K-P formalism for binary electrolyte solutions. The Peusner coefficients obtained from the transformations of the K-K formalism coefficients for the transport of electrolyte solutions through the artificial polymer membrane were used to calculate the coupling coefficients of the membrane processes and to calculate the dissipative energy flux. In addition, the dissipative energy flux, as a function of thermodynamic forces, made it possible to investigate the energy conversion of transport processes in the membrane system. Full article
(This article belongs to the Special Issue Molecular Dynamics Simulation for Membrane Separation)
Show Figures

Figure 1

17 pages, 3148 KiB  
Article
Evaluation of Transport Properties and Energy Conversion of Bacterial Cellulose Membrane Using Peusner Network Thermodynamics
by Izabella Ślęzak-Prochazka, Kornelia M. Batko and Andrzej Ślęzak
Entropy 2023, 25(1), 3; https://doi.org/10.3390/e25010003 - 20 Dec 2022
Cited by 1 | Viewed by 1725
Abstract
We evaluated the transport properties of a bacterial cellulose (BC) membrane for aqueous ethanol solutions. Using the Rr version of the Kedem–Katchalsky–Peusner formalism (KKP) for the concentration polarization (CP) conditions of solutions, the osmotic and diffusion fluxes as well as the membrane [...] Read more.
We evaluated the transport properties of a bacterial cellulose (BC) membrane for aqueous ethanol solutions. Using the Rr version of the Kedem–Katchalsky–Peusner formalism (KKP) for the concentration polarization (CP) conditions of solutions, the osmotic and diffusion fluxes as well as the membrane transport parameters were determined, such as the hydraulic permeability (Lp), reflection (σ), and solute permeability (ω). We used these parameters and the Peusner (Rijr) coefficients resulting from the KKP equations to assess the transport properties of the membrane based on the calculated dependence of the concentration coefficients: the resistance, coupling, and energy conversion efficiency for aqueous ethanol solutions. The transport properties of the membrane depended on the hydrodynamic conditions of the osmotic diffusion transport. The resistance coefficients R11r, R22r, and Rdetr were positive and higher, and the R12r coefficient was negative and lower under CP conditions (higher in convective than nonconvective states). The energy conversion was evaluated and fluxes were calculated for the U-, F-, and S-energy. It was found that the energy conversion was greater and the S-energy and F-energy were lower under CP conditions. The convection effect was negative, which means that convection movements were directed vertically upwards. Understanding the membrane transport properties and mechanisms could help to develop and improve the membrane technologies and techniques used in medicine and in water and wastewater treatment processes. Full article
(This article belongs to the Special Issue Thermodynamics of Matter in Wide Range of Entropies)
Show Figures

Figure 1

24 pages, 5121 KiB  
Article
Management of Energy Conversion Processes in Membrane Systems
by Kornelia M. Batko, Izabella Ślęzak-Prochazka, Andrzej Ślęzak, Wioletta M. Bajdur and Maria Włodarczyk-Makuła
Energies 2022, 15(5), 1661; https://doi.org/10.3390/en15051661 - 23 Feb 2022
Cited by 4 | Viewed by 1882
Abstract
The internal energy (U-energy) conversion to free energy (F-energy) and energy dissipation (S-energy) is a basic process that enables the continuity of life on Earth. Here, we present a novel method of evaluating F-energy in a [...] Read more.
The internal energy (U-energy) conversion to free energy (F-energy) and energy dissipation (S-energy) is a basic process that enables the continuity of life on Earth. Here, we present a novel method of evaluating F-energy in a membrane system containing ternary solutions of non-electrolytes based on the Kr version of the Kedem–Katchalsky–Peusner (K–K–P) formalism for concentration polarization conditions. The use of this formalism allows the determination of F-energy based on the production of S-energy and coefficient of the energy conversion efficiency. The K–K–P formalism requires the calculation of the Peusner coefficients Kijr and Kdetr (i, j ∈ {1, 2, 3}, r = A, B), which are necessary to calculate S-energy, the degree of coupling and coefficients of energy conversion efficiency. In turn, the equations for S-energy and coefficients of energy conversion efficiency are used in the F-energy calculations. The Kr form of the Kedem–Katchalsky–Peusner model equations, containing the Peusner coefficients Kijr and Kdetr, enables the analysis of energy conversion in membrane systems and is a useful tool for studying the transport properties of membranes. We showed that osmotic pressure dependences of indicated Peusner coefficients, energy conversion efficiency coefficient, entropy and energy production are nonlinear. These nonlinearities were caused by pseudophase transitions from non-convective to convective states or vice versa. The method presented in the paper can be used to assess F-energy resources. The results can be adapted to various membrane systems used in chemical engineering, environmental engineering or medical applications. It can be used in designing new technologies as a part of process management. Full article
(This article belongs to the Special Issue Heat and Mass Transfer Systems)
Show Figures

Figure 1

27 pages, 7096 KiB  
Article
The Rr Form of the Kedem–Katchalsky–Peusner Model Equations for Description of the Membrane Transport in Concentration Polarization Conditions
by Kornelia M. Batko, Andrzej Ślęzak, Sławomir Grzegorczyn and Wioletta M. Bajdur
Entropy 2020, 22(8), 857; https://doi.org/10.3390/e22080857 - 1 Aug 2020
Cited by 5 | Viewed by 2842
Abstract
The paper presents the Rr matrix form of Kedem–Katchalsky–Peusner equations for membrane transport of the non-homogeneous ternary non-electrolyte solutions. Peusner’s coefficients Rijr and det [Rr] (i, j ∈ {1, 2, 3}, r = A, [...] Read more.
The paper presents the Rr matrix form of Kedem–Katchalsky–Peusner equations for membrane transport of the non-homogeneous ternary non-electrolyte solutions. Peusner’s coefficients Rijr and det [Rr] (i, j ∈ {1, 2, 3}, r = A, B) occurring in these equations, were calculated for Nephrophan biomembrane, glucose in aqueous ethanol solutions and two different settings of the solutions relative to the horizontally oriented membrane for concentration polarization conditions or homogeneity of solutions. Kedem–Katchalsky coefficients, measured for homogeneous and non-homogeneous solutions, were used for the calculations. The calculated Peusner’s coefficients for homogeneous solutions depend linearly, and for non-homogeneous solutions non-linearly on the concentrations of solutes. The concentration dependences of the coefficients Rijr and det [Rr] indicate a characteristic glucose concentration of 9.24 mol/m3 (at a fixed ethanol concentration) in which the obtained curves for Configurations A and B intersect. At this point, the density of solutions in the upper and lower membrane chamber are the same. Peusner’s coefficients were used to assess the effect of concentration polarization and free convection on membrane transport (the ξij coefficient), determine the degree of coupling (the rijr coefficient) and coupling parameter (the QRr coefficient) and energy conversion efficiency (the (eijr)r coefficient). Full article
(This article belongs to the Special Issue Thermodynamic Modelling in Membrane)
Show Figures

Figure 1

Back to TopTop