Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Permian Lucaogou Formation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 57804 KiB  
Article
Multiscale Characteristics and Controlling Factors of Shale Oil Reservoirs in the Permian Lucaogou Formation (Jimusaer Depression, Junggar Basin, NW China)
by Yang Lian, Liping Zhang, Xuan Chen, Xin Tao, Yuhao Deng and Peiyan Li
Minerals 2025, 15(5), 438; https://doi.org/10.3390/min15050438 - 23 Apr 2025
Cited by 1 | Viewed by 400
Abstract
The Permian Lucaogou Formation (PLF) shale oil reservoirs in the Junggar Basin exhibit significant lithological heterogeneity, which limits the understanding of the relationship between macroscopic and microscopic reservoir characteristics, as well as insights into reservoir quality. To address this gap, thirty core samples, [...] Read more.
The Permian Lucaogou Formation (PLF) shale oil reservoirs in the Junggar Basin exhibit significant lithological heterogeneity, which limits the understanding of the relationship between macroscopic and microscopic reservoir characteristics, as well as insights into reservoir quality. To address this gap, thirty core samples, exhibiting typical sedimentary features, were selected from a 46 m section of the PLF for sedimentological analysis, thin section examination, high-performance microarea scanning, and scanning electron microscopy. Seven main lithofacies were identified, including massive bedding slitstone/fine-grained sandstone (LS1), cross to parallel bedding siltstone (LS2), climbing ripple laminated argillaceous siltstone (LS3), paired graded bedding argillaceous siltstone (LS4), irregular laminated argillaceous siltstone (LS5), irregular laminated silty mudstone (LM2), and horizontal laminated mudstone (LM2). The paired graded bedding sequences with internal erosion surfaces, massive bedding, and terrestrial plant fragments suggest a lacustrine hyperpycnal flow origin. The channel subfacies of hyperpycnal flow deposits, primarily consisting of LS1 and LS2, reflect strong hydrodynamic conditions, with a single-layer thickness ranging from 1.3 to 3.8 m (averaging 2.2 m) and porosity between 7.8 and 14.2% (averaging 12.5%), representing the primary sweet spot. The lobe subfacies, composed mainly of LS3, LS4, and LS5, reflect relatively strong hydrodynamic conditions, with a single-layer thickness ranging from 0.5 to 1.4 m (averaging 0.8 m) and porosity between 4.2 and 13.8% (averaging 9.6%), representing the secondary sweet spot. In conclusion, strong hydrodynamic conditions and depositional microfacies are key factors in the formation and distribution of sweet spots. The findings of this study are valuable for identifying sweet spots in the PLF and provide useful guidance for the exploration of lacustrine shale oil reservoirs in the context of hyperpycnal flow deposition globally. Full article
Show Figures

Figure 1

17 pages, 4986 KiB  
Article
Geochemical Characteristics of Crude Oil and Oil–Source Correlations in the Yongfeng Sub-Sag of the Bogda Mountain Front Belt
by Xiangcan Sun, Jianwei Wu, Xingui Zhou, Yongjin Gao, Youxing Yang, Zhongkai Bai, Kun Yuan, Lei Wen and Yi Chen
Energies 2025, 18(4), 917; https://doi.org/10.3390/en18040917 - 14 Feb 2025
Viewed by 527
Abstract
The exploration level of the Bogda Mountain front belt is relatively low, and the research on hydrocarbon accumulation is limited, resulting in unclear sources of discovered oil. To further investigate the geochemical characteristics and sources of crude oil in the Bogda Mountain front [...] Read more.
The exploration level of the Bogda Mountain front belt is relatively low, and the research on hydrocarbon accumulation is limited, resulting in unclear sources of discovered oil. To further investigate the geochemical characteristics and sources of crude oil in the Bogda Mountain front belt, this study conducted geochemical experimental analysis and oil–source correlations on crude oil and hydrocarbon source rock samples from the Permian Lucaogou Formation in the Yongfeng sub-sag and surrounding areas of the Bogda Mountain front belt. By using gas chromatography–mass spectrometry technology, the geochemical characteristics of saturated hydrocarbons and aromatic compounds were analyzed. Combined with stable carbon isotopes of saturated hydrocarbons and aromatic hydrocarbons, the organic matter source, maturity, and sedimentary environment were determined. The research results indicate that the crude oil from Well Xyd 1 exhibits mature characteristics, and the source material was deposited in a reducing to weakly oxidizing, weakly reducing environment. The source rocks of the Lucaogou Formation in Well Xyd 1 were formed in a reducing, semi-saline–saline sedimentary environment, while those from the Gjg and Dhs outcrops developed in a weakly oxidizing–weakly reducing, non-high-salinity, weakly stratified sedimentary environment. Carbon isotope, terpane, and isoalkane characteristics confirm a significant genetic relationship between the crude oil from Well Xyd 1 and the local Luzhaogou Formation source rocks. The source rocks of the Luzhaogou Formation in the Yongfeng sub-sag exhibit strong heterogeneity, with significant differences in sedimentary environments and parent materials in their spatial distribution. Maturity analysis indicates that the Luzhaogou Formation source rocks in Well Xyd 1 have reached a mature stage, whereas those from the Gjg and Dhs outcrops are at a relatively low maturity level. Full article
Show Figures

Figure 1

21 pages, 8843 KiB  
Article
Organic Geochemical Characteristics and Hydrocarbon Significance of the Permian System Around the Bogda Mountain, Junggar Basin, Northwest China
by Jiaquan Zhou, Chao Li, Ziyi Song and Xinlei Zhang
Sustainability 2025, 17(1), 347; https://doi.org/10.3390/su17010347 - 5 Jan 2025
Cited by 3 | Viewed by 1250
Abstract
Shale oil and gas resources have become an alternative energy source and are crucial in the field of sustainable oil and gas exploration. In the Junggar Basin, the Permian is not only the most significant source rock, but also an important field in [...] Read more.
Shale oil and gas resources have become an alternative energy source and are crucial in the field of sustainable oil and gas exploration. In the Junggar Basin, the Permian is not only the most significant source rock, but also an important field in shale oil and gas exploration. However, there are significant differences in the effectiveness of source rocks in different layers. During the Permian, the Bogda region effectively recorded the transition from marine environments in the Early Permian to terrestrial environments in the Late Permian, providing a viable opportunity for studying the Permian source rock of the Junggar Basin. We conducted an analysis of the total organic carbon (TOC), Rock-Eval pyrolysis, vitrinite reflectance (Ro), and biomarker compounds of Permian source rocks around the Bogda Mountain. The results indicate that the Lower Permian strata were primarily deposited in a moderately reducing marine environment, with the main organic matter sourced from planktonic organisms. These strata are currently in a high to over-mature stage, evaluated as medium-quality source rocks, and may have already generated and expelled substantial quantities of oil and gas, making the Lower Permian hydrocarbon resources within the basin a noteworthy target for deep condensate oil and gas exploration in adjacent depressions. The Middle Permian Wulabo and Jingjingzigou formations were deposited in a moderately oxidizing marine–continental transitional environment with significant terrestrial organic input. The kerogen type is predominantly Type III, and these formations are presently in the mature to over-mature stage with low organic abundance and poor hydrocarbon generation potential. The Middle Permian Lucaogou Formation was deposited in a moderately reducing saline lacustrine environment, with algae and planktonic organisms as the primary sources of organic matter. The kerogen types are mainly Type I and II1, and it is currently within the oil-generation window. It is characterized by high organic abundance and evaluated as good to excellent source rocks, possessing substantial potential for shale oil exploration. The Upper Permian Wutonggou Formation was primarily deposited in a highly oxidizing continental environment with significant terrestrial input. The primary organic source comprises higher plants, resulting in Type III kerogen. These strata exhibit low organic abundance, are currently in the immature to mature stage, and are evaluated as poor source rocks with limited exploration potential. The information presented in this paper has important theoretical significance and practical value for oil and gas exploration and development in the Junggar Basin. Full article
(This article belongs to the Topic Recent Advances in Diagenesis and Reservoir 3D Modeling)
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

14 pages, 8798 KiB  
Article
Characteristics and Origin of Natural Gas in Yongfeng Sub-Sag of Bogda Mountain Front Belt
by Xiangcan Sun, Yi Chen, Xingui Zhou, Zhongkai Bai, Yukun Du, Lei Wen and Kun Yuan
Appl. Sci. 2024, 14(19), 9085; https://doi.org/10.3390/app14199085 - 8 Oct 2024
Cited by 1 | Viewed by 872
Abstract
By systematically analyzing the natural gas composition, carbon isotopes, and source rock characteristics in the Yongfeng sub-sag of the Bogda Mountain front belt, natural gas characteristics were determined, and the genetic types and sources of natural gas were investigated. The research results indicate [...] Read more.
By systematically analyzing the natural gas composition, carbon isotopes, and source rock characteristics in the Yongfeng sub-sag of the Bogda Mountain front belt, natural gas characteristics were determined, and the genetic types and sources of natural gas were investigated. The research results indicate that methane is the main component of natural gas in the Yongfeng sub-sag, with low levels of heavy hydrocarbons and a high drying coefficient. These characteristics make it dry gas, which refers to natural gas with a methane content of over 95%. The ethane carbon isotope δ13C2 of natural gas is −28.5‰ and belongs to oil type gas. The methane carbon isotope δ13C1 of natural gas is −58.6‰~−59.4‰, has a relatively depleted methane carbon isotope value, shows significant differences from the surrounding natural gas methane carbon isotope, and belongs to the category of biogenic gas. The Permian Lucaogou Formation is the main source rock in the study area, with good organic matter abundance. The microscopic components of kerogen are mainly composed of sapropelic formations and the organic matter type is I–II1. The source rock has a high maturity and has reached the mature stage, mainly consisting of oil and wet gas. The ethane carbon isotope of natural gas in the Yongfeng sub-sag shows as oil type gas, which is consistent with the kerogen type of the Lucaogou Formation source rocks, indicating that the natural gas mainly comes from the Lucaogou Formation source rocks. Based on comprehensive data and information on natural gas composition, carbon isotopes, and burial history of the source rocks, it is believed that some of the crude oil generated from the Lucaogou Formation in the early stage underwent biodegradation due to tectonic uplift, resulting in biogenic methane and the formation of crude oil biodegraded gas. Full article
Show Figures

Figure 1

18 pages, 3641 KiB  
Article
Distribution, Origin, and Impact on Diagenesis of Organic Acids in Representative Continental Shale Oil
by Wenjun Pang, Jing Li, Shixin Zhou, Yaoyu Li, Liangliang Liu, Hao Wang and Gengrong Chen
Processes 2024, 12(10), 2092; https://doi.org/10.3390/pr12102092 - 26 Sep 2024
Cited by 1 | Viewed by 1084
Abstract
This investigation focuses on the prevalent continental oil shale within the Triassic Chang 7, a member of the Yanchang Formation in the Ordos Basin and the Permian Lucaogou Formation in the Junggar Basin of western China, and delves into the impacts of hydrocarbon [...] Read more.
This investigation focuses on the prevalent continental oil shale within the Triassic Chang 7, a member of the Yanchang Formation in the Ordos Basin and the Permian Lucaogou Formation in the Junggar Basin of western China, and delves into the impacts of hydrocarbon generation and the derived organic acids on the physical attributes of oil shale reservoirs. Water-soluble organic acids (WSOAs) were extracted via Soxhlet extraction and analyzed by a 940 ion chromatograph (Metrohm AG), supplemented with core observations, thin-section analyses, pyrolysis, and trace element assays, as well as the qualitative observation of pore structures via FIB-SEM scanning electron microscopy. The study discloses substantial disparities in the types and abundances of organic acids within the oil shale strata of the two regions, with mono-acids being conspicuously more prevalent than dicarboxylic acids. The spatial distribution of organic acids within the oil shale strata in the two regions is non-uniform, and their generation is inextricably correlated with the type of organic matter, thermal maturity, and depth at which they are buried. During diverse stages of diagenesis, the hydrocarbons and organic acids produced from the pyrolysis of organic matter not only exert an impact on the properties of pore fluids but also interact with diagenetic processes such as compaction, dissolution, and metasomatism to enhance the reservoir quality of oil shale. The synergy between chemical interactions and physical alterations collectively governs the migration and distribution patterns of organic acids as well as the characteristics of oil shale reservoirs. Furthermore, the sources of organic acids within the oil shale series in the two regions demonstrate pronounced dissimilarities, which are intimately associated with the peculiarities of their sedimentary milieu. The oil shale of the Yanchang Formation was formed in a warm and humid freshwater lacustrine basin environment, while the oil shale of the Lucaogou Formation was deposited in a brackish to saline lacustrine setting under an arid to semi-arid climatic regime. These variances not only illuminate the intricacy and multiplicity of the sedimentary attributes of oil shale but also accentuate the impact of the sedimentary environment on the genesis and distribution of organic acids, especially the transformation and optimization of reservoir dissolution by organic acids generated during hydrocarbon generation—a factor of paramount significance for the precise identification and effective development of the “sweet spot” area of shale oil. These areas, characterized by an abundance of organic matter, their maturity, and superior reservoir properties, are the foci of the efficient exploration and development of continental shale oil. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 15596 KiB  
Article
Paleo-Sedimentary Environment and Formation Mechanism of the Organic-Rich Shale of the Permian Lucaogou Formation, Jimsar Sag, Junggar Basin, China
by Zhongying Zhao, Senhu Lin, Xia Luo and Lijun Zhang
Minerals 2024, 14(7), 635; https://doi.org/10.3390/min14070635 - 21 Jun 2024
Viewed by 1109
Abstract
The Jimsar Sag is an important shale oil exploration target area in the Junggar Basin, northwestern China. The Permian Lucaogou Formation, with a thickness of 200–300 m, is the primary exploration target. High-frequency variation in lithology is a typical feature of the Lucaogou [...] Read more.
The Jimsar Sag is an important shale oil exploration target area in the Junggar Basin, northwestern China. The Permian Lucaogou Formation, with a thickness of 200–300 m, is the primary exploration target. High-frequency variation in lithology is a typical feature of the Lucaogou Formation, reflecting the fluctuation of the depositional environment and organic matter enrichment. The evolution of the depositional environment and accumulation mechanism of organic matter still need to be elucidated for the Lucaogou Formation. High-resolution sampling of the entire Lucaogou Formation was applied to a 248 m long core from Well JX in the Jimsar Sag to examine the depositional environment and organic matter enrichment. The findings unveiled that the Lucaogou Formation was deposited under a hot and arid climate, within the confines of a closed saline paleo-lake, where sediments endured an extended period of anoxic conditions, displayed periodic oscillations in paleo-temperature and paleo-salinity values over time, alongside a continuous rise in paleo-water depth. The predominant source lithology of the Lucaogou Formation is felsic igneous rock. Small-scale transgression and hydrothermal sedimentation occurred during the deposition of the Lucaogou Formation. The prevailing hot climate and enduring reducing environment fostered ideal circumstances for the enrichment of organic matter in the Lucaogou Formation. Due to different sedimentary environments and enrichment mechanisms, organic matter is enriched in two modes in the Lucaogou Formation. Full article
Show Figures

Figure 1

24 pages, 31262 KiB  
Article
Hydrocarbon Source Rock Evaluation of the Lucaogou Shale in the Periphery of Bogeda Mountain (SE Junggar Basin, China) and Its Implications for Shale Oil Exploration: Insights from Organic Geochemistry, Petrology, and Kinetics Pyrolysis
by Guanlong Zhang, Yuqiang Yang, Tianjiao Liu, Youde Xu, Xiangchun Chang, Yansheng Qu, Bingbing Shi, Bo Yang and Tao Song
Processes 2024, 12(2), 356; https://doi.org/10.3390/pr12020356 - 8 Feb 2024
Cited by 1 | Viewed by 1444
Abstract
Since the discovery of the vast Jimusaer shale oilfield in the southeastern Junggar Basin in 2012, there has been considerable interest in neighboring areas around Bogeda Mountain that have shale oil potential. The primary productive interval in the basin, the Middle Permian Lucaogou [...] Read more.
Since the discovery of the vast Jimusaer shale oilfield in the southeastern Junggar Basin in 2012, there has been considerable interest in neighboring areas around Bogeda Mountain that have shale oil potential. The primary productive interval in the basin, the Middle Permian Lucaogou Formation (P2l), is well-developed in the areas of Qitai, Mulei, Shiqiantan, Chaiwopu, and Miquan. In this study, we conducted an assessment of the hydrocarbon generation potential of the P2l in these five areas and compared it with that of the P2l in the Jimusaer oilfield, which were determined by GC-MS, total organic carbon (TOC) and vitrinite reflectance (Ro) measurements, Rock-Eval pyrolysis, and organic petrology to investigate the type, origin, thermal maturity, hydrocarbon potential, and oil/gas proneness of organic matter in the P2l. Additionally, we applied open-system pyrolysis of hydrocarbon generation kinetics to explore differences in hydrocarbon generation and expulsion across various P2l mudstone/shale in the southeastern Junggar Basin. The findings of this study revealed that the P2l shale in Qitai and Miquan areas contains more abundant and lower thermally mature organic matter (early mature–mature stage), characterized by primarily Type II1–I kerogen, similar to that found in the P2l shale of the Jimusaer oilfield. Conversely, the P2l shale in Mulei, Shiqiantan, and Chaiwopu contains less abundant and more thermally mature organic matter (mainly mature–highly mature stage), dominated by Type II2–III kerogen. Consequently, shale in these areas is considerably less desirable for oil exploration compared to the Jimusaer shale. The semi-deep to deep lake facies in Miquan and Qitai exhibit the most promising exploration potential. This study can serve as a guide for shale oil exploration in the southeastern Junggar Basin. Full article
(This article belongs to the Special Issue Exploration, Exploitation and Utilization of Coal and Gas Resources)
Show Figures

Figure 1

21 pages, 4559 KiB  
Article
Evaluation of the Rock Mechanical Properties of Shale Oil Reservoirs: A Case Study of Permian Lucaogou Formation in the Jimusar Sag, Junggar Basin
by Jian Xiong, Renzhong Gan, Xiangjun Liu, Lixi Liang and Xiucheng Guo
Appl. Sci. 2023, 13(23), 12851; https://doi.org/10.3390/app132312851 - 30 Nov 2023
Cited by 4 | Viewed by 1865
Abstract
Rock mechanical properties play an important role in the exploration and development of shale oil reservoirs. To study the rock mechanical properties continuously distributed along the longitudinal direction of the formation, physical and mechanical property data of shales from the Permian Lucaogou Formation [...] Read more.
Rock mechanical properties play an important role in the exploration and development of shale oil reservoirs. To study the rock mechanical properties continuously distributed along the longitudinal direction of the formation, physical and mechanical property data of shales from the Permian Lucaogou Formation of the Junggar Basin were gathered through experimental tests. The regression analysis method was applied to obtain relationships between physical properties and rock mechanical properties. Based on this, new empirical relationships between rock mechanical properties were established. The results show that the uniaxial compressive strength (UCS) ranged from 48.40 to 147.86 MPa, the Young’s modulus (Es) was between 3.02 and 20.63 GPa, the Poisson’s ratio (νs) ranged from 0.13 to 0.36, the cohesive force (C) ranged from 14.65 to 34.60 MPa, and the internal friction angle (φ) was between 27.61 and 46.94°. The rock mechanical properties were more sensitive to the P-wave interval transit time (Δtc) and bulk density (DEN). Among them, the UCS was more sensitive to Δtc, while the C, Es, and νs were more sensitive to Δtc/DEN. For UCS and Es, an exponential function correlation is more reliable than linear expression and power function, whereas for C and νs, power function and linear expression were adopted for higher accuracy, respectively. Compared with the empirical equations presented in the literature, the empirical equations established in the paper are more accurate and reliable, making them applicable to the Permian Lucaogou Formation shale oil reservoirs in the Jimusar Sag of the Junggar Basin. Full article
(This article belongs to the Special Issue Advances and Challenges in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

15 pages, 4981 KiB  
Article
Tight Reservoir Characteristics and Controlling Factors of Permian Lucaogou Formation in Yongfeng Sub-Sag, Chaiwopu Sag
by Peng Wu, Peihua Zhao, Yi Chen, Haixing Yang, Yun Yang, Qiu Dong, Yihang Chang, Lei Wen, Kun Yuan, Yukun Du and Xiangcan Sun
Processes 2023, 11(11), 3068; https://doi.org/10.3390/pr11113068 - 26 Oct 2023
Cited by 3 | Viewed by 1421
Abstract
On the basis of the observation of rock cores and cuttings, combining the information from thin section identification, physical properties analysis, scanning electron microscopy, X-ray diffraction, etc., the characteristics and controlling factors of the tight reservoir in the Permian Lucaogou Formation of the [...] Read more.
On the basis of the observation of rock cores and cuttings, combining the information from thin section identification, physical properties analysis, scanning electron microscopy, X-ray diffraction, etc., the characteristics and controlling factors of the tight reservoir in the Permian Lucaogou Formation of the Yongfeng sub-sag of the Chaiwopu sag have been studied. Based on the analysis, the Lucaogou Formation in the study area can be divided into two lithological sections. The tight sandstone reservoir, characterized by low porosity and low permeability, is mainly developed in the upper section of the Lucaogou Formation. The lithology of the tight reservoirs is mainly lithic sandstone with low compositional and structural maturity. The reservoir space types mainly consist of secondary pores, including intergranular dissolution pores, intragranular dissolution pores and fractures, and the primary pores are severely destroyed. The main controlling factors of reservoirs include sedimentary facies, lithology, diagenesis, later tectonic movements and fractures, and the latter two factors have a significant impact on improving reservoir physical properties and seepage capacity. The tight reservoir has high brittleness and low water sensitivity, which is very conducive to large-scale hydraulic fracturing to transform the reservoir and improve oil and gas production capacity. Full article
Show Figures

Graphical abstract

21 pages, 12309 KiB  
Article
Synergistic Evolution of Palaeoenvironment—Bionts and Hydrocarbon Generation of Permian Saline Lacustrine Source Rocks in Jimusar Sag, Junggar Basin
by Zaibo Xie, Huifei Tao, Yongqiang Qu, Tao Wu, Dongzheng Ma, Tianhai Wang, Zhen Qin, Long Su and Zhongping Li
Energies 2023, 16(9), 3797; https://doi.org/10.3390/en16093797 - 28 Apr 2023
Cited by 3 | Viewed by 1705
Abstract
This study focused on Middle Permian Lucaogou Formation saline lake source rocks, utilizing a combination of biomarkers and hydrocarbon generation thermal simulation to analyze their biological compositions, depositional environments, and hydrocarbon generation potential. The Pr/Ph ratio, Ph/nC18 ratio, and Pr/ [...] Read more.
This study focused on Middle Permian Lucaogou Formation saline lake source rocks, utilizing a combination of biomarkers and hydrocarbon generation thermal simulation to analyze their biological compositions, depositional environments, and hydrocarbon generation potential. The Pr/Ph ratio, Ph/nC18 ratio, and Pr/nC17 ratio indicate that the Lucaogou Formation was in a reducing environment during the deposition period, and the lower part of the Lucaogou Formation (P2l1) is more anoxic than the upper part of the Lucaogou Formation (P2l2). The maturity index 20S (%) and ββ (%) reflect that the maturity of organic matter in the P2l1 is slightly higher than that in the P2l2. The G/H index and the ETR index indicate that the stratification of the water column is better during the sedimentary period of Lucaogou Formation and the salinity of the P2l1 is higher than that of the P2l2. The biomarker parameters of nC21−/nC22+, CPI, S/H, and C22T/C21T reflect that the organic matter of the source rocks have a higher abundance of bacteria and algae than higher plants, and the contents of bacteria are more than that of algae. The (7- + 8-MMAs)/Cmax and (C28 + C29 − St)/St parameters indicate that cyanobacteria accounted for a certain proportion of bacteria, and the algae are mainly green algae. The co-evolution of the sedimentary environment and the biological composition reflects the control of the sedimentary paleoenvironment on biological composition. According to the relative content of cyanobacteria, green algae, and Rhodophyta, the source rocks of the upper and lower Lucaogou Formation correspond to the low-salinity type (LS-type) and the high-salinity type (HS-type), respectively. Compared with LS-type source rocks, HS-type source rocks have greater generation potential of oil and weaker gas generation potential. This study is valuable for the accurate assessment of source rocks and holds significant practical implications for the exploration of oil and gas resources. Full article
(This article belongs to the Special Issue Sedimentary Organic Matter in Shale Oil/Gas Systems)
Show Figures

Figure 1

23 pages, 14077 KiB  
Article
Permian Cyanobacterial Blooms Resulted in Enrichment of Organic Matter in the Lucaogou Formation in the Junggar Basin, NW China
by Wenhui Wang, Haisu Cui, Jingqiang Tan, Jin Liu, Xueqi Song, Jian Wang and Lichang Chen
Minerals 2023, 13(4), 537; https://doi.org/10.3390/min13040537 - 12 Apr 2023
Cited by 8 | Viewed by 2171
Abstract
The Permian Lucaogou Formation in the Junggar Basin, NW China is the target layer for shale oil exploration, but its hydrocarbon precursors have remained the focus of debate. In this study, we investigated the Lucaogou source rocks throughout Well J10025 by conducting detailed [...] Read more.
The Permian Lucaogou Formation in the Junggar Basin, NW China is the target layer for shale oil exploration, but its hydrocarbon precursors have remained the focus of debate. In this study, we investigated the Lucaogou source rocks throughout Well J10025 by conducting detailed petrological, paleontological, and geochemical analyses for the purpose of revealing the occurrence of cyanobacterial blooms as specific hydrocarbon events in the upper Lucaogou Formation. The morphological characteristics of the microfossils and the geochemical signatures of the microfossil-bearing layers support a biological affinity with Microcystis, a kind of cyanobacteria. Microcystis observed as colonial forms embedded in the upper Lucaogou Formation are of great abundance, indicating the presence of cyanobacterial blooms. They were further evidenced by cyanobacteria-derived biomarkers including low terrestrial/aquatic ratio, high 2α-methylhopane index values, and high abundance of 7- and 8-monomethyl heptadecanes. The blooms occurred in a semiarid and brackish paleoenvironment with anoxic to suboxic water conditions and intermittent volcanic eruptions. Permian Microcystis blooms contributed to the enrichment of organic matter in the upper Lucaogou Formation in two main ways: by directly promoting the accumulation of algal biomass and by creating an oxygen-depleted environment for better preservation of organic matter. This study adds a new record to the geological occurrences of cyanobacterial blooms in the Permian, and provides unique insight into the hydrocarbon generation of Jimsar shale oil in the Junggar Basin. Full article
Show Figures

Figure 1

16 pages, 8382 KiB  
Article
Research on Microscopic Pore Structure Characteristics and Influencing Factors of Shale Reservoirs: A Case Study of the Second Member of the Permian Lucaogou Formation in Malang Sag, Santanghu Basin
by Xuejuan Zhang, Dandan Wang, Lei Zhang, Yabing Xing, Yi Zhang, Weiming Wang, Yinglin Liu and Hongping Mao
Energies 2023, 16(5), 2453; https://doi.org/10.3390/en16052453 - 4 Mar 2023
Cited by 7 | Viewed by 1974
Abstract
For the second member of the Permian Lucaogou Formation in Malang Sag, Santanghu Basin, we used field emission scanning electron microscopy (SEM), cryogenic nitrogen gas adsorption, and the micro/nano CT method, combined with the fractal theory, to depict the dense reservoir space types [...] Read more.
For the second member of the Permian Lucaogou Formation in Malang Sag, Santanghu Basin, we used field emission scanning electron microscopy (SEM), cryogenic nitrogen gas adsorption, and the micro/nano CT method, combined with the fractal theory, to depict the dense reservoir space types of the reservoir and the microcosmic pore structure characteristics, perform the quantitative evaluation of aperture size, pore shape, and connectivity, and to analyze the mineral composition of the micropore structure of the reservoir. The results show that the area is dominated by sandy/argillaceous dolomite, and the reservoir space types mainly develop dissolved intergranular pores and intergranular pores, a few microfractures, and parallel plate and slit nanoscale pores. There is a positive correlation between pore volume and specific surface area, with micropore volume accounting for 14.95%, mesopore volume at 82.47%, and macropore volume at 2.58%. The mesoporous volume provides the main pore storage space. The combined specific surface area of micropores and mesoporous pores accounts for more than 99% of the total specific surface area, providing almost all the pore surface area, which is the main site for shale oil and gas adsorption. The fractal dimension D value of the samples is between 2.39 and 2.49, and the pore distribution of shale is relatively uniform, mainly developing mesoporous pores. The specific surface area and average radius are positively correlated with the content of dolomite in mineral components. The results of the CT experiment also confirm that the pore throat of samples with high dolomite content is mostly a coarse tubular and banded distribution in three-dimensional space, with good connectivity. Full article
Show Figures

Figure 1

25 pages, 5794 KiB  
Article
Diagenetic Facies Controls on Differential Reservoir-Forming Patterns of Mixed Shale Oil Sequences in the Saline Lacustrine Basin
by Ming Xie, Wei Yang, Mingzhu Zhao, Yingyan Li, Yuan Deng, Yang Gao, Changfu Xu, Haodong Hou, Linjie Yao, Zilong Zhang and Jiankang Lu
Minerals 2023, 13(2), 143; https://doi.org/10.3390/min13020143 - 18 Jan 2023
Cited by 2 | Viewed by 1992
Abstract
The Permian Lucaogou Formation has developed mixed shale reservoirs, but there are few studies on the diagenetic facies, and the control effect of differential diagenesis on the reservoir capacity of shale oil reservoirs in this area is not clear. Therefore, shale samples of [...] Read more.
The Permian Lucaogou Formation has developed mixed shale reservoirs, but there are few studies on the diagenetic facies, and the control effect of differential diagenesis on the reservoir capacity of shale oil reservoirs in this area is not clear. Therefore, shale samples of the Lucaogou Formation were systematically selected in this study, and through cast thin sections, field emission scanning electron microscopy, XRD mineral analysis, low-temperature nitrogen adsorption and high-pressure mercury injection experiments, the reservoir capacity of the shale oil reservoirs was evaluated from the perspective of diagenetic evolution. The results show that the shale oil reservoir of the Lucaogou Formation in Jimsar Sag is in the middle diagenetic stage A. The diagenetic evolution sequence is compaction—chlorite cementation—silica cementation—first-stage carbonate cementation—first-stage dissolution of authentic albite—illite/smectite mixed layer cementation—second-stage carbonate cementation—second-stage dissolution. The shale reservoirs are divided into five diagenetic facies: tuffaceous–feldspar dissolution facies, mixed cementation dissolution facies, chlorite thin-membrane facies, carbonate cementation facies and mixed cementation compact facies. Among them, the former two diagenetic facies have strong dissolution and weak cementation and are high-quality diagenetic facies, mainly characterized by large pore volume and good pore connectivity, with relatively low D2 values defined as the fractal dimension of mesopores. On the basis of the above research, three different control models of Lucaogou Formation shale oil reservoirs are proposed, including dissolution to increase pores, chlorite cementation to preserve pores, and strong compaction cementation to reduce pores. The quality of reservoirs developed in this model is successively high, medium, and low. This work can provide guidance for the fine characterization and grading evaluation of mixed shale oil reservoirs in saline lake basins and has important theoretical and practical significance for the prediction of shale oil “sweet spot” distribution. Full article
Show Figures

Figure 1

20 pages, 13243 KiB  
Article
The Depositional Mechanism of Hydrothermal Chert Nodules in a Lacustrine Environment: A Case Study in the Middle Permian Lucaogou Formation, Junggar Basin, Northwest China
by Jiaquan Zhou, Hailin Yang, Hanlin Liu and Yue Jiao
Minerals 2022, 12(10), 1333; https://doi.org/10.3390/min12101333 - 20 Oct 2022
Cited by 4 | Viewed by 3709
Abstract
Although chert deposits are limited in geological distribution, their geological and geochemical characteristics can provide important information to reconstruct paleoenvironmental and diagenetic processes. For the Permian period, cherts are utilized to trace global silicon cycles and hydrothermal activities in relation to the Permian [...] Read more.
Although chert deposits are limited in geological distribution, their geological and geochemical characteristics can provide important information to reconstruct paleoenvironmental and diagenetic processes. For the Permian period, cherts are utilized to trace global silicon cycles and hydrothermal activities in relation to the Permian Chert Event. In Northwest China, Permian chert nodules have recently been discovered in both the southeastern and northwestern margins of the Junggar Basin. We conducted an analysis of the mineralogy, petrology and geochemistry of chert nodules of the Lucaogou Formation in the southeastern margin of the Junggar Basin to identify silicon sources and determine the precipitation mechanism of chert nodules. As evidenced by petrology, the chert nodules were mainly composed of crypto-microcrystalline silica (94.33% on average), with development of a soft-sediment deformation structure, indicating the synsedimentary deposition of silicon. Proven by trace elements, high Eu/Eu* ratios (average 2.14), low total rare earth element content (average 6.03 ppm), low LaN/YbN ratios (average 0.17) and low Y/Ho ratios (average 25.25) in chert nodules supports the hydrothermal source of silicon. The wide distribution of authigenic metal-bearing minerals and the significant positive Eu anomalies observed suggest that the chert depositions in the Lucaogou Formation intermittently received high-temperature (>250 °C) hydrothermal fluids, likely associated with the initiation of the Bogda Rift in the middle Permian. Following rapid cooling down and differential compaction, siliceous sediments dehydrated and deformed, finally forming chert nodules. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

22 pages, 20380 KiB  
Article
Identification of Diagenetic Facies Logging of Tight Oil Reservoirs Based on Deep Learning—A Case Study in the Permian Lucaogou Formation of the Jimsar Sag, Junggar Basin
by Ming Qi, Changcheng Han, Cunfei Ma, Geng Liu, Xudong He, Guan Li, Yi Yang, Ruyuan Sun and Xuhui Cheng
Minerals 2022, 12(7), 913; https://doi.org/10.3390/min12070913 - 20 Jul 2022
Cited by 6 | Viewed by 2155
Abstract
As a typical tight oil reservoir in a lake basin, the Permian Lucaogou Formation of the Jimsar Sag in the Junggar Basin has great potential for exploration and development. However, at present, there are few studies on the identification of the diagenetic facies [...] Read more.
As a typical tight oil reservoir in a lake basin, the Permian Lucaogou Formation of the Jimsar Sag in the Junggar Basin has great potential for exploration and development. However, at present, there are few studies on the identification of the diagenetic facies of tight oil reservoir logging in the study area, and the control effect of diagenesis on tight oil reservoirs is not clear. The present work investigates the diagenesis and diagenetic facies logging of the study area, making full use of core data, thin sections, and logs, among other data, in order to understand the reservoir characteristics of the Permian Lucaogou Formation in the Jimsar Sag. The results show that the Lucaogou Formation has undergone diagenetic activity such as compaction, carbonate cementation, quartz cementation, and clay mineral infilling and dissolution. The diagenetic facies are classified according to mineral and diagenetic type, namely, tightly compacted facies, carbonate-cemented facies, clay mineral-filling facies, quartz-cemented facies, and dissolution facies. The GR, RT, AC, DEN, and CNL logging curves were selected, among others, and the convolutional neural network was introduced to construct a diagenetic facies logging recognition model. The diagenetic facies of a single well was divided and identified, and the predicted diagenetic facies types were compared with thin sections and SEM images of the corresponding depths. Prediction results had a high coincidence rate, which indicates that the model is of a certain significance to accurately identify the diagenetic facies of tight oil reservoirs. Assessing the physical properties of the studied reservoirs, dissolution facies are the dominant diagenetic facies in the study area and are also the preferred sequence for exploration—to find dominant reservoirs in the following stage. Full article
(This article belongs to the Special Issue Reservoir Geology and Oil & Gas Reservoir Characterization)
Show Figures

Figure 1

Back to TopTop