Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = PeERF1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 31493 KB  
Article
Combined Physiology and Transcriptome Analyses Provide Insights into Malformed Fruit of Cocos nucifera L.
by Lilan Lu, Zhiguo Dong, Yuan Zhang, Siting Chen and Qingxin Wu
Agriculture 2025, 15(7), 723; https://doi.org/10.3390/agriculture15070723 - 27 Mar 2025
Cited by 1 | Viewed by 816
Abstract
Malformed coconut fruit occurrence exhibits dual impacts on agricultural productivity and economic returns, primarily through substantial yield reduction and compromised commercial value resulting from morphological defects. To elucidate the molecular determinants underlying this developmental anomaly, we conducted a systematic investigation integrating physiological profiling [...] Read more.
Malformed coconut fruit occurrence exhibits dual impacts on agricultural productivity and economic returns, primarily through substantial yield reduction and compromised commercial value resulting from morphological defects. To elucidate the molecular determinants underlying this developmental anomaly, we conducted a systematic investigation integrating physiological profiling and transcriptomic sequencing on pulp tissues from malformed (MF) and normal (NF) coconut fruits. Notably, MF specimens displayed marked depletion in carbohydrate reserves, with soluble sugars (SS), reducing sugars (RS), starch (SH), soluble proteins (SP), and fat (FA) declining by 28.57%, 20.43%, 15.51%, 36.78%, and 50.18%, respectively, compared to NF controls. Conversely, a coordinated upregulation of phytohormones was observed, where indole acetic acid (IAA), abscisic acid (ABA), cytokinin (CK), gibberellic acid (GA), brassinosteroid (BR), jasmonic acid (JA), and salicylic acid (SA) levels increased by 31.82–92.97%, while ethylene (ETH) exhibited a paradoxical 30.09% reduction. Transcriptomic dissection revealed 6370 functionally annotated differentially expressed genes (DEGs), comprising 4235 upregulated and 2135 downregulated transcripts. These DEGs were predominantly enriched in critical pathways including plant hormone signal transduction, flavonoid/phenylpropanoid biosynthesis, and carbohydrate metabolic networks. Particularly noteworthy was the enhanced activity of cell wall remodeling enzymes—cellulase (CEL), polygalacturonase (PG), and pectinesterase (PE)—accompanied by differential expression of nine cell wall-associated gene families (CEL, PE, PG, PEL, URG, UTR, VTC2, EXP, XET/XTH) and eight phytohormone-related gene clusters. Functional stratification analysis further identified key transcriptional regulators, with MYB, ERF/AP2, BHLH, WRKY, bZIP, and MADS transcription factors demonstrating significant expression divergence, suggesting their pivotal regulatory roles in MF pathogenesis. This multi-omics integration not only deciphers the molecular choreography of coconut fruit malformation but also establishes a novel conceptual framework for developmental disorder research in perennial crops. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

20 pages, 8153 KB  
Article
Genome-Wide Identification and Functional Analysis of AP2/ERF Gene Family in Passiflora edulis Sims
by Lanjun Luo, Liping Zhang, Ronghao Gu, Shihao Ni, Jingyao Yu, Yachao Gao and Chuanying Fang
Plants 2025, 14(5), 645; https://doi.org/10.3390/plants14050645 - 20 Feb 2025
Cited by 1 | Viewed by 1642
Abstract
The Apetala2/Ethylene Responsive Factor (AP2/ERF) family represents a critical group of transcription factors in plants, recognized for their roles in growth, development, fruit ripening, and postharvest processes. This study aimed to identify and characterize the AP2/ERF gene family in passion fruit (Passiflora [...] Read more.
The Apetala2/Ethylene Responsive Factor (AP2/ERF) family represents a critical group of transcription factors in plants, recognized for their roles in growth, development, fruit ripening, and postharvest processes. This study aimed to identify and characterize the AP2/ERF gene family in passion fruit (Passiflora edulis Sims) and investigate their potential roles in flavor enhancement. A total of 91 PeAP2/ERF genes were identified and classified into five subfamilies. Chromosome localization and collinearity analysis demonstrated their distribution across all nine chromosomes of passion fruit, with tandem duplication events identified as a key driver of family expansion. Exon–intron configurations and motif compositions were highly conserved among PeAP2/ERF genes. Promoter cis-acting element analysis indicated potential regulation by environmental signals, including abiotic and biotic stresses, as well as hormonal cues. Postharvest storage induced the expression of 59 PeAP2/ERF genes over time. Notably, PeAP2-10 was found to enhance the expression of PeSTP6, a gene associated with sugar transport, suggesting its potential influence on the flavor profile of passion fruit. These findings provide valuable insights into the functional roles of PeAP2/ERF genes in passion fruit, highlighting their significance in postharvest management and flavor quality enhancement strategies. Full article
Show Figures

Figure 1

22 pages, 8176 KB  
Article
Genome-Wide Analysis of HECT E3 Ligases Members in Phyllostachys edulis Provides Insights into the Role of PeHECT1 in Plant Abiotic Stress Response
by Xinru Xie, Songping Hu, Linxiu Liu, Huanhuan Pan, Hu Huang, Xun Cao, Guirong Qiao, Xiaojiao Han, Wenmin Qiu, Zhuchou Lu, Renying Zhuo and Jing Xu
Int. J. Mol. Sci. 2024, 25(22), 11896; https://doi.org/10.3390/ijms252211896 - 5 Nov 2024
Cited by 2 | Viewed by 1421
Abstract
Homology to E6-AP Carboxy Terminus (HECT) E3 ubiquitin ligases play pivotal roles in plant growth, development, and responses to abiotic stresses. However, the function of HECT genes in Phyllostachys edulis (P. edulis) remains largely uninvestigated. In this study, a comprehensive genome-wide [...] Read more.
Homology to E6-AP Carboxy Terminus (HECT) E3 ubiquitin ligases play pivotal roles in plant growth, development, and responses to abiotic stresses. However, the function of HECT genes in Phyllostachys edulis (P. edulis) remains largely uninvestigated. In this study, a comprehensive genome-wide analysis of the HECT E3 ubiquitin ligases gene family in P. edulis was conducted, aiming to elucidate its evolutionary relationships and gene expansion. Analysis of gene structure, conserved motifs and domains, and synteny genome regions were performed. Furthermore, cis-elements in HECT gene promoters that respond to plant hormones and environmental stresses were identified and corroborated by expression data from diverse abiotic stress conditions and hormone treatments. Based on the co-expression network of PeHECTs under cold and dehydration stresses, PeHECT1 was identified as a key candidate gene associated with abiotic stress tolerance. Overexpression of PeHECT1 in tobacco leaves significantly upregulated genes related to reactive oxygen species (ROS) detoxification and polyamine biosynthesis. Yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA), and dual-luciferase (dual-LUC) assays suggested that the transcription factor ETHYLENE RESPONSE FACTOR 3 (PeERF3) bound to the dehydration-responsive element (DRE) of the promoter of PeHECT1 and activated its transcription activity. Phylogenetic analysis indicated that PeHECT1 in P. edulis exhibited a close association with the diploid herbaceous bamboo Olyra latifolia, followed by the divergence of rice and bamboo. In summary, this study enhances our comprehensive understanding of the HECT E3 ubiquitin ligases gene family in P. edulis and highlights the potential role of PeHECT1 in plant abiotic stress response. Full article
(This article belongs to the Special Issue Plant Resistance to Biotic and Abiotic Stresses)
Show Figures

Figure 1

26 pages, 18602 KB  
Article
Integration of Phenotypes, Phytohormones, and Transcriptomes to Elucidate the Mechanism Governing Early Physiological Abscission in Coconut Fruits (Cocos nucifera L.)
by Lilan Lu, Zhiguo Dong, Xinxing Yin, Siting Chen and Ambreen Mehvish
Forests 2024, 15(8), 1475; https://doi.org/10.3390/f15081475 - 22 Aug 2024
Cited by 3 | Viewed by 1850
Abstract
The abscission of fruits has a significant impact on yield, which in turn has a corresponding effect on economic benefits. In order to better understand the molecular mechanism of early coconut fruit abscission, the morphological and structural characteristics, cell wall hydrolysis and oxidase [...] Read more.
The abscission of fruits has a significant impact on yield, which in turn has a corresponding effect on economic benefits. In order to better understand the molecular mechanism of early coconut fruit abscission, the morphological and structural characteristics, cell wall hydrolysis and oxidase activities, phytohormones, and transcriptomes were analyzed in the abscission zone (AZ) from early-abscised coconut fruits (AFs) and non-abscised coconut fruits (CFs). These results indicated that the weight and water content of AFs are significantly lower than those of CFs, and the color of AFs is a grayish dark red, with an abnormal AZ structure. Cellulase (CEL), polygalacturonase (PG), pectinesterase (PE), and peroxidase (POD) activities were significantly lower than those of CFs. The levels of auxin (IAA), gibberellin (GA), cytokinins (CKs), and brassinosteroid (BR) in AFs were significantly lower than those in CFs. However, the content of abscisic acid (ABA), ethylene (ETH), jasmonic acid (JA), and salicylic acid (SA) in AFs was significantly higher than in CFs. The transcriptome analysis results showed that 3601 DEGs were functionally annotated, with 1813 DEGs upregulated and 1788 DEGs downregulated. Among these DEGs, many genes were enriched in pathways such as plant hormone signal transduction, carbon metabolism, peroxisome, pentose and gluconate interconversion, MAPK signaling pathway—plant, and starch and sucrose metabolism. Regarding cell wall remodeling-related genes (PG, CEL, PE, POD, xyloglucan endoglucosidase/hydrogenase (XTH), expansin (EXP), endoglucanase, chitinase, and beta-galactosidase) and phytohormone-related genes (IAA, GA, CKs, BR, ABA, JA, SA, and ETH) were significantly differentially expressed in the AZ of AFs. Additionally, BHLH, ERF/AP2, WRKY, bZIP, and NAC transcription factors (TFs) were significantly differently expressed, reflecting their crucial role in regulating the abscission process. This study’s results revealed the molecular mechanism of early fruit abscission in coconuts. This provided a new reference point for further research on coconut organ development and abscission. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

20 pages, 9547 KB  
Article
Transcriptome Analysis of Populus euphratica under Salt Treatment and PeERF1 Gene Enhances Salt Tolerance in Transgenic Populus alba × Populus glandulosa
by Xiao-Lan Ge, Lei Zhang, Jiu-Jun Du, Shuang-Shuang Wen, Guan-Zheng Qu and Jian-Jun Hu
Int. J. Mol. Sci. 2022, 23(7), 3727; https://doi.org/10.3390/ijms23073727 - 28 Mar 2022
Cited by 18 | Viewed by 4276
Abstract
Populus euphratica is mainly distributed in desert environments with dry and hot climate in summer and cold in winter. Compared with other poplars, P. euphratica is more resistant to salt stress. It is critical to investigate the transcriptome and molecular basis of salt [...] Read more.
Populus euphratica is mainly distributed in desert environments with dry and hot climate in summer and cold in winter. Compared with other poplars, P. euphratica is more resistant to salt stress. It is critical to investigate the transcriptome and molecular basis of salt tolerance in order to uncover stress-related genes. In this study, salt-tolerant treatment of P. euphratica resulted in an increase in osmo-regulatory substances and recovery of antioxidant enzymes. To improve the mining efficiency of candidate genes, the analysis combining both the transcriptome WGCNA and the former GWAS results was selected, and a range of key regulatory factors with salt resistance were found. The PeERF1 gene was highly connected in the turquoise modules with significant differences in salt stress traits, and the expression levels were significantly different in each treatment. For further functional verification of PeERF1, we obtained stable overexpression and dominant suppression transgenic lines by transforming into Populus alba × Populusglandulosa. The growth and physiological characteristics of the PeERF1 overexpressed plants were better than that of the wild type under salt stress. Transcriptome analysis of leaves of transgenic lines and WT revealed that highly enriched GO terms in DEGs were associated with stress responses, including abiotic stimuli responses, chemical responses, and oxidative stress responses. The result is helpful for in-depth analysis of the salt tolerance mechanism of poplar. This work provides important genes for poplar breeding with salt tolerance. Full article
(This article belongs to the Collection Recent Advances in Plant Molecular Science in China 2021)
Show Figures

Figure 1

Back to TopTop