Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Pantoea eucalypti

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3234 KiB  
Article
An Emerging Bacterial Leaf Disease in Rice Caused by Pantoea ananatis and Pantoea eucalypti in Northeast China
by Guohua Duan, Xin Liu, Shaoqi Zhang, Mengzhu Chai, Zhao Peng, Zihan Lin, Dayong Li and Wenxian Sun
Microorganisms 2025, 13(6), 1376; https://doi.org/10.3390/microorganisms13061376 - 13 Jun 2025
Cited by 1 | Viewed by 965
Abstract
Rice production faces new challenges from emerging diseases due to intensive cultivation practices and climate warming in China. A new rice leaf bacterial disease has recently occurred in Northeast China. The symptoms of the disease are similar to those of bacterial leaf blight. [...] Read more.
Rice production faces new challenges from emerging diseases due to intensive cultivation practices and climate warming in China. A new rice leaf bacterial disease has recently occurred in Northeast China. The symptoms of the disease are similar to those of bacterial leaf blight. Disease lesions spread along leaf edges and are later dried up due to water loss. In this study, 17 bacterial isolates were identified as the causal agents of the new disease following Koch’s postulates. These strains are categorized into two groups based on colony morphology and molecular characterization. Phylogenetic analysis using the five housekeeping genes leuS, gyrB, fusA, pyrG, and rplB reveals that the two groups of the isolates belong to Pantoea ananatis and P. eucalypti, respectively. The new rice disease is caused by P. ananatis, P. eucalypti, or a combination of both bacterial species. A complete genome map has also been assembled for P. eucalypti. Meanwhile, some important virulence factors have been predicted based on gene annotation and determination of extracellular enzymes. Collectively, this study represents the first report of a new rice leaf disease caused by P. eucalypti and the first high-quality genome assembly of P. eucalypti that infects rice leaves. Full article
(This article belongs to the Special Issue Phytopathogens: Detection and Control)
Show Figures

Figure 1

17 pages, 2631 KiB  
Article
Bioprospection of Bacterial Strains from Chromite Process Industry Residues from Mexico for Potential Remediation
by Paola Abigail Martínez-Aldape, Mario Enrique Sandoval-Vergara, Reyna Edith Padilla-Hernández, César Augusto Caretta, Julio César Valerdi-Negreros, Pablo Casanova, Magna Maria Monteiro, Claire Gassie, Marisol Goñi-Urriza, Elcia Margareth Souza Brito and Remy Guyoneaud
Appl. Microbiol. 2024, 4(2), 665-681; https://doi.org/10.3390/applmicrobiol4020046 - 18 Apr 2024
Cited by 2 | Viewed by 1823
Abstract
Industrial residues with high concentrations of hexavalent chromium [Cr(VI)], characterized by an alkaline pH (between 9 and 13) and high salinity (around 100 psu), were used as a source for extremophilic chromium-resistant and -reducing microorganisms. An investigation of biodiversity through MiSeq showed the [...] Read more.
Industrial residues with high concentrations of hexavalent chromium [Cr(VI)], characterized by an alkaline pH (between 9 and 13) and high salinity (around 100 psu), were used as a source for extremophilic chromium-resistant and -reducing microorganisms. An investigation of biodiversity through MiSeq showed the presence of 20 bacterial classes, with Bacilli (47%), Negativicutes (15%), Bacteriodia (8%), Gammaproteobacteria (7%) and Clostridia (5%) being the most abundant. The bioprospection allowed the cultivation of 87 heterotrophic bacterial colonies and 17 bacterial isolates at the end of the isolation, and screening procedures were obtained. The isolates were related to Cellulosimicrobium aquatile, C. funkei, Acinetobacter radioresistens, Staphylococcus equorum, S. epidermis, Brachybacterium paraconglometratum, Glutamicibacter creatinolyticus, Pseudomonas songnenensis, Microbacterium algeriense and Pantoea eucalypti, most of them being resistant to Cr(VI). Resistances of up to 400 mg.L1 of chromate were obtained for four related strains (QReMLB55A, QRePRA55, QReMLB33A and QReMLB44C). The C. aquatile strain QReMLB55A and the P. songnenensis strain QReMLB33A were exposed to K2Cr2O7 (200 mg.L1) under optimal conditions, diminishing 94% and 24% of the Cr(VI) in 6 days, respectively. These strains exhibited a high potential for chromium remediation biotechnologies. Full article
Show Figures

Figure 1

17 pages, 12445 KiB  
Article
Transcriptional Profiling and Transposon Mutagenesis Study of the Endophyte Pantoea eucalypti FBS135 Adapting to Nitrogen Starvation
by Shengquan Huang, Xiuyu Zhang, Zongwen Song, Mati Ur Rahman and Ben Fan
Int. J. Mol. Sci. 2023, 24(18), 14282; https://doi.org/10.3390/ijms241814282 - 19 Sep 2023
Cited by 1 | Viewed by 1551
Abstract
The research on plant endophytes has been drawing a lot of attention in recent years. Pantoea belongs to a group of endophytes with plant growth-promoting activity and has been widely used in agricultural fields. In our earlier studies, Pantoea eucalypti FBS135 was isolated [...] Read more.
The research on plant endophytes has been drawing a lot of attention in recent years. Pantoea belongs to a group of endophytes with plant growth-promoting activity and has been widely used in agricultural fields. In our earlier studies, Pantoea eucalypti FBS135 was isolated from healthy-growing Pinus massoniana and was able to promote pine growth. P. eucalypti FBS135 can grow under extremely low nitrogen conditions. To understand the mechanism of the low-nitrogen tolerance of this bacterium, the transcriptome of FBS135 in the absence of nitrogen was examined in this study. We found that FBS135 actively regulates its gene expression in response to nitrogen deficiency. Nearly half of the number (4475) of genes in FBS135 were differentially expressed under this condition, mostly downregulated, while it significantly upregulated many transportation-associated genes and some nitrogen metabolism-related genes. In the downregulated genes, the ribosome pathway-related ones were significantly enriched. Meanwhile, we constructed a Tn5 transposon library of FBS135, from which four genes involved in low-nitrogen tolerance were screened out, including the gene for the host-specific protein J, RNA polymerase σ factor RpoS, phosphoribosamine-glycine ligase, and serine acetyltransferase. Functional analysis of the genes revealed their potential roles in the adaptation to nitrogen limitation. The results obtained in this work shed light on the mechanism of endophytes represented by P. eucalypti FBS135, at the overall transcriptional level, to an environmentally limited nitrogen supply and provided a basis for further investigation on this topic. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Transcriptional Regulation in Bacteria)
Show Figures

Figure 1

14 pages, 8099 KiB  
Article
Conjugation Dynamics of Self-Transmissible and Mobilisable Plasmids into E. coli O157:H7 on Arabidopsis thaliana Rosettes
by Mitja N. P. Remus-Emsermann, David Aicher, Cosima Pelludat, Pascal Gisler and David Drissner
Antibiotics 2021, 10(8), 928; https://doi.org/10.3390/antibiotics10080928 - 30 Jul 2021
Cited by 5 | Viewed by 3049
Abstract
Many antibiotic resistance genes present in human pathogenic bacteria are believed to originate from environmental bacteria. Conjugation of antibiotic resistance conferring plasmids is considered to be one of the major reasons for the increasing prevalence of antibiotic resistances. A hotspot for plasmid-based horizontal [...] Read more.
Many antibiotic resistance genes present in human pathogenic bacteria are believed to originate from environmental bacteria. Conjugation of antibiotic resistance conferring plasmids is considered to be one of the major reasons for the increasing prevalence of antibiotic resistances. A hotspot for plasmid-based horizontal gene transfer is the phyllosphere, i.e., the surfaces of aboveground plant parts. Bacteria in the phyllosphere might serve as intermediate hosts with transfer capability to human pathogenic bacteria. In this study, the exchange of mobilisable and self-transmissible plasmids via conjugation was evaluated. The conjugation from the laboratory strain Escherichia coli S17-1, the model phyllosphere coloniser Pantoea eucalypti 299R, and the model pathogen E. coli O157:H7 to the recipient strain E. coli O157:H7::MRE103 (EcO157:H7red) in the phyllosphere of Arabidopsis thaliana was determined. The results suggest that short-term occurrence of a competent donor is sufficient to fix plasmids in a recipient population of E. coli O157:H7red. The spread of self-transmissible plasmids was limited after initial steep increases of transconjugants that contributed up to 10% of the total recipient population. The here-presented data of plasmid transfer will be important for future modelling approaches to estimate environmental spread of antibiotic resistance in agricultural production environments. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and the Environment: One Health Approach)
Show Figures

Figure 1

15 pages, 2528 KiB  
Article
Relationship of the Pine Growth Promoting Pantoea eucalypti FBS135 with Type Strains P. eucalypti LMG 24197T and P. vagans 24199T
by Chunyue Wei, Zhongwen Song, Yiming Lu, Yinjuan Zhao and Ben Fan
Life 2021, 11(7), 608; https://doi.org/10.3390/life11070608 - 24 Jun 2021
Cited by 6 | Viewed by 2544
Abstract
Endophytes in woody plants are much less understood. Pantoea strain FBS135 is an endophytic bacterium isolated from Pinus massoniana with the ability to promote pine growth significantly. In this study, we demonstrated that FBS135 has the astonishing ability of low nitrogen tolerance but [...] Read more.
Endophytes in woody plants are much less understood. Pantoea strain FBS135 is an endophytic bacterium isolated from Pinus massoniana with the ability to promote pine growth significantly. In this study, we demonstrated that FBS135 has the astonishing ability of low nitrogen tolerance but no ability of nitrogen fixation. To exactly determine the phylogenetic status of FBS135, we sequenced the whole genomes of P. eucalypti LMG 24197T and P. vagans 24199T, type strains of two Pantoea species, which are evolutionarily closest to FBS135. P. eucalypti LMG 24197T contained a single chromosome of 4,035,995 bp (C+G, 54.6%) plus three circular plasmids while LMG 24199T comprises a single circular chromosome of 4,050,173 bp (C+G, 55.6%) and two circular plasmids. With the genomic information, FBS135 was finally identified as a P. eucalypti strain, although it showed some different physiological traits from the two type strains. Comparative genomic analyses were performed for the three strains, revealing their common molecular basis associated with plant lifecycle as well as the differences in their gene arrangements relating to nitrogen utilization. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

Back to TopTop