Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = PVC frequency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5735 KiB  
Article
Fractional Calculus as a Tool for Modeling Electrical Relaxation Phenomena in Polymers
by Flor Y. Rentería-Baltiérrez, Jesús G. Puente-Córdova, Nasser Mohamed-Noriega and Juan Luna-Martínez
Polymers 2025, 17(13), 1726; https://doi.org/10.3390/polym17131726 - 20 Jun 2025
Viewed by 428
Abstract
The dielectric relaxation behavior of polymeric materials is critical to their performance in electronic, insulating, and energy storage applications. This study presents an electrical fractional model (EFM) based on fractional calculus and the complex electric modulus ( [...] Read more.
The dielectric relaxation behavior of polymeric materials is critical to their performance in electronic, insulating, and energy storage applications. This study presents an electrical fractional model (EFM) based on fractional calculus and the complex electric modulus (M*=M+iM) formalism to simultaneously describe two key relaxation phenomena: α-relaxation and interfacial polarization (Maxwell–Wagner–Sillars effect). The model incorporates fractional elements (cap-resistors) into a modified Debye equivalent circuit to capture polymer dynamics and energy dissipation. Fractional differential equations are derived, with fractional orders taking values between 0 and 1; the frequency and temperature responses are analyzed using Fourier transform. Two temperature-dependent behaviors are considered: the Matsuoka model, applied to α-relaxation near the glass transition, and an Arrhenius-type equation, used to describe interfacial polarization associated with thermally activated charge transport. The proposed model is validated using literature data for amorphous polymers, polyetherimide (PEI), polyvinyl chloride (PVC), and polyvinyl butyral (PVB), successfully fitting dielectric spectra and extracting meaningful physical parameters. The results demonstrate that the EFM is a robust and versatile tool for modeling complex dielectric relaxation in polymeric systems, offering improved interpretability over classical integer-order models. This approach enhances understanding of coupled relaxation mechanisms and may support the design of advanced polymer-based materials with tailored dielectric properties. Full article
(This article belongs to the Special Issue Relaxation Phenomena in Polymers)
Show Figures

Figure 1

18 pages, 3003 KiB  
Article
Performance Evaluation of AML Equipment for Determining the Depth and Location of Subsurface Facilities in South Korea
by Seung-Jun Lee and Hong-Sik Yun
Appl. Sci. 2025, 15(11), 5794; https://doi.org/10.3390/app15115794 - 22 May 2025
Viewed by 441
Abstract
The accurate detection and mapping of subsurface utilities are critical for ensuring safety and efficiency in excavation and construction projects. Among various technologies, Ground-Penetrating Radar (GPR) has been widely used for locating underground infrastructure due to its non-destructive nature and ability to detect [...] Read more.
The accurate detection and mapping of subsurface utilities are critical for ensuring safety and efficiency in excavation and construction projects. Among various technologies, Ground-Penetrating Radar (GPR) has been widely used for locating underground infrastructure due to its non-destructive nature and ability to detect both metallic and non-metallic materials. However, many GPR systems struggle to meet the practical depth requirements in real-world conditions, especially when identifying non-metallic facilities such as PVC and PE pipes. In South Korea, the legal regulations require underground utility locators to meet specific accuracy standards, including a minimum detectable depth of 3 m. These regulations also mandate periodic performance testing of surveying equipment at authorized inspection centers. Despite this, most GPR systems tested at the official performance evaluation site at Sungkyunkwan University demonstrated limited effectiveness, with an average detection range of only 1.5 m. This study evaluates the performance of a handheld All Materials Locator (AML) device developed by SubSurface Instruments, Inc., (Janesville, WI, USA) which uses ultra-high radio frequencies to detect subsurface density variations. Experimental results from both the certified test facility and field conditions indicate that the AML meets South Korea’s legal requirements for minimum depth and accuracy, by successfully identifying a wide range of subsurface utilities including non-metallic materials. The findings suggest that the AML is a viable alternative to conventional GPR systems for utility detection in regulated environments. Full article
(This article belongs to the Special Issue Ground Penetrating Radar (GPR): Theory, Methods and Applications)
Show Figures

Figure 1

12 pages, 4132 KiB  
Article
Contactless Detection of pH Change in a Liquid Analyte
by Dylan Gustafson and Dominic Klyve
Sensors 2025, 25(9), 2832; https://doi.org/10.3390/s25092832 - 30 Apr 2025
Viewed by 561
Abstract
We describe an experiment in which we employ a radiofrequency sensor to measure pH changes in a liquid solution. The experiment is novel in a few ways. First, the sensor does not have contact with the liquid but rather detects the change from [...] Read more.
We describe an experiment in which we employ a radiofrequency sensor to measure pH changes in a liquid solution. The experiment is novel in a few ways. First, the sensor does not have contact with the liquid but rather detects the change from the outside of a PVC pipe. Second, the change is detected using a Linear Discriminant Analysis model using values from an inverse Fourier transform of the frequency data as its features. We believe this to be the first use of Fourier analysis in contactless pH measurement using radio frequencies. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

16 pages, 10526 KiB  
Article
Characterization and Optimization of Sound Transmission Loss of PVC Foam Sandwich Structure Reinforced by Carbon Fiber Columns
by Kangle Li, Zhiwei Zhou, Jichao Lei, Lixian Wang, Wenkai Dong, Yongbo Jiang and Ying Li
J. Mar. Sci. Eng. 2025, 13(2), 380; https://doi.org/10.3390/jmse13020380 - 19 Feb 2025
Viewed by 693
Abstract
This study presents a foam sandwich structure reinforced with carbon fiber columns (FSS-CFC), which exhibits strong mechanical and sound insulation properties. The FSS-CFC consists of two face-sheets and a polyvinyl chloride (PVC) core containing multiple CFC cylinders arranged in a periodic array. The [...] Read more.
This study presents a foam sandwich structure reinforced with carbon fiber columns (FSS-CFC), which exhibits strong mechanical and sound insulation properties. The FSS-CFC consists of two face-sheets and a polyvinyl chloride (PVC) core containing multiple CFC cylinders arranged in a periodic array. The sound transmission loss (STL) measured in acoustic tube experiments closely aligns with the finite element simulation results, validating the reliability of the present research. Through characteristic analyses, the study reveals the sound insulation mechanism of FSS-CFC, identifying three distinct sound insulation dips caused by the standing wave resonance of the core, column-driven same-direction bending vibrations, and column-constrained opposite-direction bending vibrations in the sheets. It is also demonstrated that the sound insulation performance of FSS-CFC is insensitive to hydrostatic pressure changes. Finally, the FSS-CFC is optimized by the genetic algorithm in MATLAB and COMSOL. The optimized FSS-CFC displays good improvements in both mechanical and acoustic performance compared to the initial structure. The average STL in the frequency of 500 Hz to 25,000 Hz has increased by 3 dB, representing an improvement of approximately 25%. The sound insulation mechanism in FSS-CFC could provide valuable insights for the development of a pressure-resistant acoustic structure for use on deep-water vehicles. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 4941 KiB  
Article
Sensitivity Analysis of Unmanned Aerial Vehicle Composite Wing Structural Model Regarding Material Properties and Laminate Configuration
by Artur Kierzkowski, Jakub Wróbel, Maciej Milewski and Angelos Filippatos
Drones 2025, 9(2), 99; https://doi.org/10.3390/drones9020099 - 28 Jan 2025
Cited by 1 | Viewed by 1471
Abstract
This study optimizes the structural design of a composite wing shell by minimizing mass and maximizing the first natural frequency. The analysis focuses on the effects of polyvinyl chloride (PVC) foam thickness and the fiber orientation angle of the inner carbon layers, with [...] Read more.
This study optimizes the structural design of a composite wing shell by minimizing mass and maximizing the first natural frequency. The analysis focuses on the effects of polyvinyl chloride (PVC) foam thickness and the fiber orientation angle of the inner carbon layers, with the outer layers fixed at ±45° for torsional rigidity. A Multi-Objective Genetic Algorithm (MOGA), well suited for complex engineering problems, was employed alongside Design of Experiments to develop a precise response surface model, achieving predictive errors of 0% for mass and 2.99% for frequency. The optimal configuration—90° and 0° fiber orientations for the upper and lower layers and a foam thickness of 1.05 mm—yielded a mass of 412 g and a frequency of 122.95 Hz. These findings demonstrate the efficacy of MOGA in achieving innovative lightweight aerospace designs, striking a balance between material efficiency and structural performance. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

18 pages, 2645 KiB  
Article
Review and External Evaluation of Population Pharmacokinetic Models for Vedolizumab in Patients with Inflammatory Bowel Disease: Assessing Predictive Performance and Clinical Applicability
by Marija Jovanović, Ana Homšek, Srđan Marković, Đorđe Kralj, Petar Svorcan, Tamara Knežević Ivanovski, Olga Odanović and Katarina Vučićević
Biomedicines 2025, 13(1), 43; https://doi.org/10.3390/biomedicines13010043 - 27 Dec 2024
Cited by 1 | Viewed by 916
Abstract
Background/Objectives: Several population pharmacokinetic models of vedolizumab (VDZ) are available for inflammatory bowel disease (IBD) patients. However, their predictive performance in real-world clinical settings remains unknown. This study aims to externally evaluate the published VDZ pharmacokinetic models, focusing on their predictive performance and [...] Read more.
Background/Objectives: Several population pharmacokinetic models of vedolizumab (VDZ) are available for inflammatory bowel disease (IBD) patients. However, their predictive performance in real-world clinical settings remains unknown. This study aims to externally evaluate the published VDZ pharmacokinetic models, focusing on their predictive performance and simulation-based clinical applicability. Methods: A literature search was conducted through PubMed to identify VDZ population pharmacokinetic models. A total of 114 VDZ concentrations from 106 IBD patients treated at the University Medical Center “Zvezdara”, Republic of Serbia, served as the external evaluation cohort. The predictive performance of the models was assessed using prediction- and simulation-based diagnostics. Furthermore, the models were utilized for Monte Carlo simulations to generate concentration–time profiles based on 24 covariate combinations specified within the models. Results: Four published pharmacokinetic models of VDZ were included in the evaluation. Using the external dataset, the median prediction error (MDPE) ranged from 13.82% to 25.57%, while the median absolute prediction error (MAPE) varied between 41.64% and 47.56%. None of the models fully met the combined criteria in the prediction-based diagnostics. However, in simulation-based diagnostics, pvcVPC showed satisfactory results, despite wide prediction intervals. Analysis of NPDE revealed that only the models by Rosario et al. and Okamoto et al. fulfilled the evaluation criteria. Simulation analysis further demonstrated that the median VDZ concentration remains above 12 μg/mL at week 22 during maintenance treatment for approximately 45–60% of patients with the best-case covariate combinations and an 8-week dosing frequency. Conclusions: None of the published models satisfied the combined criteria (MDPE, MAPE, percentages of prediction error within ±20% and ±30%), rendering them unsuitable for a priori predictions. However, two models demonstrated better suitability for simulation-based applications. Full article
Show Figures

Figure 1

15 pages, 4336 KiB  
Article
Measuring Microplastic Concentrations in Water by Electrical Impedance Spectroscopy
by Diogo Gomes, Solange Magalhães, Maria Graça Rasteiro and Pedro Faia
Water 2024, 16(22), 3228; https://doi.org/10.3390/w16223228 - 10 Nov 2024
Cited by 1 | Viewed by 2104
Abstract
Plastics are vital for society, but their usage has grown exponentially and contributes to the growth of pollution worldwide. The World Health Organization, WHO, already reported that microplastics (MPs) are found everywhere, in waste and fresh water, and in the air and soil. [...] Read more.
Plastics are vital for society, but their usage has grown exponentially and contributes to the growth of pollution worldwide. The World Health Organization, WHO, already reported that microplastics (MPs) are found everywhere, in waste and fresh water, and in the air and soil. Regarding water effluents, waste-water treatment plants only minimize the problem, trapping only larger size particles. In contrast, smaller ones remain in oxidation ponds or sewage sludges, or are even released to aquifers environment. Classic procedures for MPs detection are still quite laborious, and are usually conducted off-line, involving several steps and expensive equipment. Electrical Impedance Spectroscopy, EIS, is a technique that allows the analysis of a system’s electrical response, yielding helpful information about its domain-dependent on physical-chemical properties. Due to the superficial electronegativity of MPs’ particles, EIS may allow to attain the purpose of the present work: to provide a fast and reliable method to detect/estimate MPs’ concentration in water effluents. Among the most common microplastics are Polyethylene, PE, and Polyvinyl Chloride, PVC. Using the developed setup and experimental data collection methodology, the authors could differentiate between MPs’ suspensions containing the same concentration of the different evaluated MPs, PVC and PE, and assess PVC concentration variation, in the interval between 0.03 to 0.5 g (w/w), with an error, estimated based on the obtained impedance modulus, around or below 3% for the entire stimulus signal frequency range (from 100 Hz to 40 MHz) for the PVC particles. Full article
Show Figures

Figure 1

17 pages, 3018 KiB  
Article
Organophosphate Esters and Polybrominated Diphenyl Ethers in Vehicle Dust: Concentrations, Sources, and Health Risk Assessment
by Junji Wang, Jianzai Lin, Xi Zhang, Qinghong Zeng, Zhu Zhu, Siyuan Zhao, Deyan Cao and Meilin Zhu
Toxics 2024, 12(11), 806; https://doi.org/10.3390/toxics12110806 - 7 Nov 2024
Cited by 2 | Viewed by 1474
Abstract
Background: The primary flame retardants in vehicles, organophosphates (OPEs) and polybrominated diphenyl ethers (PBDEs), volatilize and accumulate in the enclosed vehicle environment, posing potential health risks. Amidst the rising number of vehicles, the scrutiny of persistent organic pollutants like OPEs and PBDEs in [...] Read more.
Background: The primary flame retardants in vehicles, organophosphates (OPEs) and polybrominated diphenyl ethers (PBDEs), volatilize and accumulate in the enclosed vehicle environment, posing potential health risks. Amidst the rising number of vehicles, the scrutiny of persistent organic pollutants like OPEs and PBDEs in vehicles is increasing. This study investigates occupational and nonoccupational population exposure to specific OPEs (TnBP, TBOEP, TEHP, TCEP, TCiPP, TDCiPP, TPhP, EHDPP) and PBDEs (BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-183, BDE-209) in vehicle dust. Methods: Data on OPEs and PBDEs in vehicle dust were sourced from PubMed and Web of Science. We applied PCA and PMF to identify pollutant sources and assessed health risks using the hazard index (HI) and carcinogenic risk (CR) methods. Monte Carlo simulations were conducted for uncertainty analysis, evaluating variable contributions to the results. Results: The predominant OPE in dust samples was TDCiPP (mean value: 4.34 × 104 ng g−1), and the main PBDE was BDE-209 (mean value: 1.52 × 104 ng g−1). Potential sources of OPEs in vehicle dust include polyvinyl chloride (PVC) upholstery, polyurethane foam (PUF) seats, electronics, carpet wear, hydraulic oil, and plastic wear in the brake system. PBDE sources likely include automotive parts, PVC upholstery, seats, carpets, and electronics. The 90th percentile HI and CR values for occupational and nonoccupational populations exposed to OPEs and PBDEs indicate that the noncarcinogenic and carcinogenic risks are relatively low. A sensitivity analysis showed that the pollutant concentration, time in the vehicle, exposure frequency, and duration significantly influence health risks. Conclusions: The health risks to both occupational and nonoccupational populations from exposure to OPEs and PBDEs in vehicle dust are relatively low. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

10 pages, 9136 KiB  
Case Report
Post-Exercise Syncope in a Previously Healthy 67-Year-Old Man: The Bezold–Jarisch Reflex and the Role of Autonomic Nervous System Dysfunction
by Livija Sušić, Marina Vidosavljević, Marko Burić, Antonio Burić and Lana Maričić
Hearts 2024, 5(4), 472-481; https://doi.org/10.3390/hearts5040034 - 26 Oct 2024
Viewed by 1512
Abstract
A 67-year-old man started treatment due to frequent asymptomatic premature ventricular complexes (PVCs) accidentally being registered during a preventive examination by a specialist, because of which he was referred to cardiologist. During the initial 24-hour (h) ECG monitoring, 4.5% PVCs and one episode [...] Read more.
A 67-year-old man started treatment due to frequent asymptomatic premature ventricular complexes (PVCs) accidentally being registered during a preventive examination by a specialist, because of which he was referred to cardiologist. During the initial 24-hour (h) ECG monitoring, 4.5% PVCs and one episode of asymptomatic non-sustained ventricular tachycardia (NSVT) with three PVCs in row, at a frequency of 150 beats per minute (bpm), were detected. After the introduction of beta blockers into therapy, a lower number of PVCs, without NSVT, were recorded in the control 24 h Holter ECG, while transthoracic echocardiography (TTE) showed normal left ventricular (LV) systolic function without cardiomyopathy. So, an exercise test was indicated, and it was interrupted in the third minute at 120 beats per minute (bpm) due to fatigue and pain in the hips, without malignant arrhythmias, angina or dyspneic complaints. During the rest period, a significant inferolateral depression of the ST junction was observed, which recovered in the ninth minute. Immediately after the ECG monitoring stopped, the patient lost consciousness; his pulse was not palpable, but breathing was audible, so cardiac massage was started. After he had regained consciousness, the ECG showed alternating sinus and junctional rhythm with the lowest frequency of 33 bpm, which was accompanied by marked hypotension (80/50 mmHg). The patient was immediately hospitalized; coronary angiography and repeated TTE were completely normal, while continuous ECG monitoring did not confirm malignant rhythm disorders or asystole. It was concluded that it was vasovagal syncope (VVS), most likely caused by the Bezold–Jarisch reflex (BJR). Full article
Show Figures

Figure 1

11 pages, 2374 KiB  
Article
Investigation of a Magnetic Levitation Architecture with a Ferrite Core for Energy Harvesting
by Igor Nazareno Soares, Ruy Alberto Corrêa Altafim, Ruy Alberto Pisani Altafim, Melkzedekue de Moraes Alcântara Calabrese Moreira, Felipe Schiavon Inocêncio de Sousa, José A. Afonso, João Paulo Carmo and Rogério de Andrade Flauzino
Energies 2024, 17(21), 5315; https://doi.org/10.3390/en17215315 - 25 Oct 2024
Cited by 2 | Viewed by 1590
Abstract
This work presents the development of a magnetic levitation system with a ferrite core, designed for electromagnetic energy harvesting from mechanical vibrations. The system consists of a fixed enamel-coated copper coil and five neodymium-iron-boron permanent magnets housed within a PVC spool. To enhance [...] Read more.
This work presents the development of a magnetic levitation system with a ferrite core, designed for electromagnetic energy harvesting from mechanical vibrations. The system consists of a fixed enamel-coated copper coil and five neodymium-iron-boron permanent magnets housed within a PVC spool. To enhance magnetic flux concentration, a manganese-zinc ferrite (Mn-Zn) ring was employed within the spool. Experimental tests were conducted at frequencies up to 20 Hz, demonstrating the device’s potential for harvesting energy from small vibrations, such as those generated by human biomechanical movements, achieving operating voltages up to 3 V. Additionally, the architecture is scalable for larger systems and allows for the integration of multiple transducers without magnetic field interference, independent of the frequency or excitation phase of each transducer. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

10 pages, 17332 KiB  
Article
A Flexible and Optical Transparent Metasurface Absorber with Broadband RCS Reduction Characteristics
by Babar Hayat, Jinling Zhang, Adil Khan, Syed Muzahir Abbas, Abdul Majeed and Samir Salem Al-Bawri
Nanomaterials 2024, 14(18), 1507; https://doi.org/10.3390/nano14181507 - 17 Sep 2024
Cited by 3 | Viewed by 1895
Abstract
Metasurface absorbers (MSAs) are of significant importance in a wide range of applications, such as in the field of stealth technology. Nevertheless, conventional designs demonstrate limited flexible characteristics and a lack of transparency, hence constraining their suitability for certain radar stealth applications. This [...] Read more.
Metasurface absorbers (MSAs) are of significant importance in a wide range of applications, such as in the field of stealth technology. Nevertheless, conventional designs demonstrate limited flexible characteristics and a lack of transparency, hence constraining their suitability for certain radar stealth applications. This study introduces a novel MSA operating in the broad microwave range, which exhibits both optical transparency and flexibility. The structure consists of a flexible substrate made of polyvinyl chloride (PVC), along with a resistive film composed of indium tin oxide (ITO). The proposed structure exhibits the ability to effectively absorb over 90% of the energy carried by incident electromagnetic (EM) waves across the frequency range of 9.85–41.76 GHz within an angular range of 0° to 60°. In addition, to assess the efficacy of the absorption performance, an examination of the radar cross-section (RCS) characteristics is conducted. The results indicate a reduction of over 10 dB across the aforementioned broad frequency spectrum, regardless of the central angle. Full article
(This article belongs to the Special Issue Advances in Photonic Metasurfaces and Metastructures)
Show Figures

Figure 1

15 pages, 570 KiB  
Review
Diving Deep into Arrhythmias: Unravelling the Impact of Underwater Environments on Premature Ventricular Complexes in Divers
by Ivan Ranic, Otakar Jiravsky, Alica Cesnakova Konecna, Bogna Jiravska Godula, Petra Pesova, Jan Chovancik, Radek Neuwirth, Libor Sknouril, Radek Pudil and Jiri Plasek
J. Clin. Med. 2024, 13(17), 5298; https://doi.org/10.3390/jcm13175298 - 6 Sep 2024
Viewed by 2218
Abstract
This review examines the relationship between the physiological demands of diving and premature ventricular complexes (PVCs) in divers. In the general population, some individuals have a greater tendency to experience PVCs, often without awareness or a clear understanding of the triggering factors. With [...] Read more.
This review examines the relationship between the physiological demands of diving and premature ventricular complexes (PVCs) in divers. In the general population, some individuals have a greater tendency to experience PVCs, often without awareness or a clear understanding of the triggering factors. With the increasing availability and popularity of both scuba and apnoea diving, more people, including those with a predisposition to PVCs, are engaging in these activities. The underwater environment, with its unique stressors, may increase the risk of arrhythmogenic events, particularly PVCs. Here, we review the prevalence, pathophysiology, and aggravating factors of PVCs in divers, emphasising the need for a comprehensive cardiovascular assessment. Evidence suggests a higher prevalence of PVCs in divers compared with the general population, influenced by factors such as age, dive depth, gas bubbles, cold water immersion, pre-existing cardiovascular diseases, and lifestyle factors. The change in environment during diving could potentially trigger an increased frequency of PVCs, especially in individuals with a pre-existing tendency. We discuss diagnostic strategies, management approaches, and preventive measures for divers with PVCs, noting that although guidelines for athletes can be adapted, individual assessment is crucial. Significant knowledge gaps are identified, highlighting the need for future research to develop evidence-based guidelines and understand the long-term significance of PVCs in divers. This work aims to evaluate potential contributing factors to PVCs in divers and identify individuals who may be at higher risk of experiencing major adverse cardiovascular events (MACEs). This work aims to improve diver safety by promoting collaboration between cardiologists and diving medicine specialists and by identifying key areas for future investigation in this field. This work aims to improve the safety and well-being of divers by understanding the cardiovascular challenges they face, including pressure changes, cold water immersion, and hypoxia. We seek to elucidate the relationship between these challenges and the occurrence of PVCs. By synthesising current evidence, identifying knowledge gaps, and proposing preliminary recommendations, we aim to encourage collaboration between cardiologists and diving medicine specialists to optimise the screening, management, and risk stratification of PVCs in the diving population. Full article
(This article belongs to the Special Issue Exercise and Sports Cardiology)
Show Figures

Figure 1

27 pages, 11012 KiB  
Article
Reusability of Scrap Rubber, Tire Shredding, Recycled PVC and Fly Ash for Development of Composites with Vibration Damping Ability
by Dan Dobrotă, Cristinel Sabin Dimulescu and Alin Stăncioiu
Polymers 2024, 16(15), 2167; https://doi.org/10.3390/polym16152167 - 30 Jul 2024
Cited by 2 | Viewed by 1509
Abstract
The study focuses on harnessing recycled materials to create sustainable and efficient composites, addressing both environmental issues related to waste management and industrial requirements for materials with improved vibration damping properties. The research involves the analysis of the physico-mechanical properties of the obtained [...] Read more.
The study focuses on harnessing recycled materials to create sustainable and efficient composites, addressing both environmental issues related to waste management and industrial requirements for materials with improved vibration damping properties. The research involves the analysis of the physico-mechanical properties of the obtained composites and the evaluation of their performance in practical applications. Composite materials were tested in terms of their tensile strength and vibration damping capabilities, considering stress–strain diagrams, vibration amplitudes, frequency response functions (FRFs) and vibration modes. The research results have shown that by adding PVC and FA to the rubber-based matrix composition, the stiffness decreases and elasticity increases. The use of FA in the structure of composite materials causes an increase in the vibration damping possibilities due to the fact that it contributes to the chemical properties of the analyzed composite materials. Additionally, the use of PVC results in increased material elasticity, as evidenced by the higher damping factor compared to materials containing only rubber. Simultaneously, the addition of FA and PVC in specific proportions (60 phr) can lead to a decrease in stiffness and a greater increase in the damping factor. The incorporation of PVC and fly ash (FA) particles into rubber-based matrix composites reduces their stiffness and increases their elasticity. These effects are due to the fact that FA particles behave as extensions of chemical bonds during traction, which contributes to the increase in yield elongation. In addition, the use of flexible PVC increases the elasticity of the material, which is evidenced by the increase in the damping factor. Full article
Show Figures

Figure 1

17 pages, 9058 KiB  
Article
Characterization of Gas–Liquid Two-Phase Slug Flow Using Distributed Acoustic Sensing in Horizontal Pipes
by Sharifah Ali, Ge Jin and Yilin Fan
Sensors 2024, 24(11), 3402; https://doi.org/10.3390/s24113402 - 25 May 2024
Cited by 4 | Viewed by 2262
Abstract
This article discusses the use of distributed acoustic sensing (DAS) for monitoring gas–liquid two-phase slug flow in horizontal pipes, using standard telecommunication fiber optics connected to a DAS integrator for data acquisition. The experiments were performed in a 14 m long, 5 cm [...] Read more.
This article discusses the use of distributed acoustic sensing (DAS) for monitoring gas–liquid two-phase slug flow in horizontal pipes, using standard telecommunication fiber optics connected to a DAS integrator for data acquisition. The experiments were performed in a 14 m long, 5 cm diameter transparent PVC pipe with a fiber cable helically wrapped around the pipe. Using mineral oil and compressed air, the system captured various flow rates and gas–oil ratios. New algorithms were developed to characterize slug flow using DAS data, including slug frequency, translational velocity, and the lengths of slug body, slug unit, and the liquid film region that had never been discussed previously. This study employed a high-speed camera next to the fiber cable sensing section for validation purposes and achieved a good correlation among the measurements under all conditions tested. Compared to traditional multiphase flow sensors, this technology is non-intrusive and offers continuous, real-time measurement across long distances and in harsh environments, such as subsurface or downhole conditions. It is cost-effective, particularly where multiple measurement points are required. Characterizing slug flow in real time is crucial to many industries that suffer slug-flow-related issues. This research demonstrated the DAS’s potential to characterize slug flow quantitively. It will offer the industry a more optimal solution for facility design and operation and ensure safer operational practices. Full article
(This article belongs to the Special Issue Advances in Fiber Optic Sensors for Energy Applications)
Show Figures

Figure 1

16 pages, 5029 KiB  
Article
Broadening Bandwidth in a Semi-Active Vibration Absorption System Utilizing Stacked Polyvinyl Chloride Gel Actuators
by Zhuoyuan Li, Chen Liu, Meiping Sheng, Minqing Wang, Hualing Chen, Bo Li and Peng Xia
Micromachines 2024, 15(5), 649; https://doi.org/10.3390/mi15050649 - 14 May 2024
Cited by 3 | Viewed by 1329
Abstract
Plasticized polyvinyl chloride (PVC) gel is a new soft and smart material, whose potential in electroactive variable stiffness can be used for vibration control in soft robotic systems. In this paper, a new semi-active vibration absorber is developed by stacking PVC gel actuator [...] Read more.
Plasticized polyvinyl chloride (PVC) gel is a new soft and smart material, whose potential in electroactive variable stiffness can be used for vibration control in soft robotic systems. In this paper, a new semi-active vibration absorber is developed by stacking PVC gel actuator units. The absorption bandwidth of a single PVC gel absorber covers the range of three natural frequencies (76.5 Hz, 95 Hz, 124 Hz) of a rectangular steel plate in vibration attenuation. The maximum reduction percentage in acceleration amplitude is 63%. With stacked PVC gel actuator units, the absorption bandwidth can be shifted and obviously broadened. Full article
(This article belongs to the Special Issue Soft Actuators: Design, Fabrication and Applications)
Show Figures

Figure 1

Back to TopTop