Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = PVA polarizing film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2495 KiB  
Article
Moisture-Resistant, High-Performance Polarizing Films via Aligned PMMA/CNT Composite Fibers: A Scalable Electrospinning Approach
by Yanyu Gao, Xueyang Chen, Yunjie Zhang, Xue-Hui Dong, Qianqian Yu and LinGe Wang
Molecules 2025, 30(10), 2169; https://doi.org/10.3390/molecules30102169 - 15 May 2025
Viewed by 534
Abstract
Traditional iodine-based polyvinyl alcohol (PVA) polarizers encounter considerable durability challenges, especially in humid conditions, due to poor moisture resistance. This study presents an innovative organic–inorganic composite film composed of poly(methyl methacrylate) (PMMA) and carbon nanotubes (CNTs), fabricated via electrospinning, solvent vapor annealing (SVA), [...] Read more.
Traditional iodine-based polyvinyl alcohol (PVA) polarizers encounter considerable durability challenges, especially in humid conditions, due to poor moisture resistance. This study presents an innovative organic–inorganic composite film composed of poly(methyl methacrylate) (PMMA) and carbon nanotubes (CNTs), fabricated via electrospinning, solvent vapor annealing (SVA), and uniaxial stretching. Pre-aligned PMMA/CNT composite fibers were electrospun and underwent SVA to stabilize the structure and reduce inter-fiber porosity. Further uniaxial stretching aligned the CNTs, enhancing optical anisotropy and polarization performance. The optimized parameters, 45 min of SVA and 75% stretching strain, produced composite films with a polarization degree exceeding 60%, which was combined with exceptional moisture resistance (<2% weight variation under 90% relative humidity). The integration of CNTs enhanced mechanical stability while preserving alignment during post-processing, thereby tackling the crucial challenge of scalable nanomaterial orientation. This study provides a scalable, cost-effective approach for developing durable polarizing materials with enhanced performance for optical devices in demanding environments. Full article
(This article belongs to the Special Issue Physicochemical Research on Material Surfaces)
Show Figures

Graphical abstract

14 pages, 3033 KiB  
Article
Luminescence Properties of Hoechst 33258 in Polyvinyl Alcohol Films
by Bong Lee, Agnieszka Jablonska, Danh Pham, Rajveer Sagoo, Zygmunt Gryczynski, Trang Thien Pham and Ignacy Gryczynski
Int. J. Mol. Sci. 2025, 26(2), 514; https://doi.org/10.3390/ijms26020514 - 9 Jan 2025
Viewed by 1204
Abstract
We report a comprehensive investigation of the photophysical properties of Hoechst 33258 (HOE) embedded in polyvinyl alcohol (PVA) films. HOE displays a bright, highly polarized, blue fluorescence emission centered at 430 nm, indicating effective immobilization within the polymer matrix of PVA. Its fluorescence [...] Read more.
We report a comprehensive investigation of the photophysical properties of Hoechst 33258 (HOE) embedded in polyvinyl alcohol (PVA) films. HOE displays a bright, highly polarized, blue fluorescence emission centered at 430 nm, indicating effective immobilization within the polymer matrix of PVA. Its fluorescence quantum yield is notably high (~0.74), as determined relative to a quinine sulfate standard. In addition, we observed that HOE-doped PVA films exhibit room temperature phosphorescence (RTP) that remains visible for several seconds after UV excitation ceases. The slightly negative phosphorescence anisotropy implies that the triplet–singlet radiative transition is orthogonal to the singlet–singlet transition governing fluorescence. Notably, we observed that direct triplet-state excitation at longer wavelengths (beyond the primary absorption band) produces highly polarized RTP. We believe this possibility of direct triplet-state excitation opens new avenues for studying RTP in polymer-immobilized molecules. Full article
(This article belongs to the Special Issue Molecular Dynamics Simulation of Biomolecules)
Show Figures

Figure 1

17 pages, 6378 KiB  
Article
Investigating Cellulose Nanocrystal and Polyvinyl Alcohol Composite Film in Moisture Sensing Application
by Ananya Ghosh, Mahesh Parit and Zhihua Jiang
Polysaccharides 2024, 5(3), 288-304; https://doi.org/10.3390/polysaccharides5030019 - 14 Jul 2024
Cited by 1 | Viewed by 1893
Abstract
This study focused on utilizing cellulose nanocrystal (CNC)–polyvinyl alcohol (PVA) composite in optical sensor applications to detect high humidity conditions and determine water concentration in ethanol. We focused on the composite’s effectiveness in moisture absorption to demonstrate visual color change. We demonstrated that [...] Read more.
This study focused on utilizing cellulose nanocrystal (CNC)–polyvinyl alcohol (PVA) composite in optical sensor applications to detect high humidity conditions and determine water concentration in ethanol. We focused on the composite’s effectiveness in moisture absorption to demonstrate visual color change. We demonstrated that the different molecular weights of PVA significantly affect CNC’s chiral nematic structure and moisture absorption capability. PVA with molecular weight 88 k–97 k exhibited the disintegration of its chiral nematic structure at 30 wt%, whereas low molecular weight PVA (n~1750) showed no structural disintegration even at 100 wt% concentration when analyzed through UV-Vis spectroscopy. Further, the thermal crosslinking of the CNC-PVA composite showed no significant loss of moisture sensitivity for all molecular weights of the PVA. We observed that the addition of PVA to the sulfated CNC obtained from sulfuric acid hydrolysis did not facilitate moisture absorption significantly. A CNC-PVA sensor was developed which can detect high humidity with 2 h. of exposure time. 2,2,6,6-tetramethylpiperidin-1-piperidinyloxy oxidized CNC (TEMPO-CNC) having carboxylic functionality was also used to prepare the CNC-PVA composite films for comparing the effect of functional groups on moisture sensitivity. Finally, we demonstrated a facile method for utilizing the composite as an optical sensor to detect water concentration in ethanol efficiently; thus, it can be used in polar organic solvent dehydration applications. Full article
Show Figures

Figure 1

11 pages, 3396 KiB  
Article
Impact of Carbon-Based Nanoparticles on Polyvinyl Alcohol Polarizer Features: Photonics Applications
by Natalia Kamanina, Larisa Fedorova, Svetlana Likhomanova, Yulia Zubtcova and Pavel Kuzhakov
Nanomaterials 2024, 14(9), 737; https://doi.org/10.3390/nano14090737 - 23 Apr 2024
Cited by 3 | Viewed by 1448
Abstract
Among different inorganic and organic polarizer elements, thin-film light polarizers occupy a special place because of their flexibility, ease of integration into any optoelectronic circuit, and good functioning in the visible and near-infrared spectral range and can compete with Glan and Nicolas volumetric [...] Read more.
Among different inorganic and organic polarizer elements, thin-film light polarizers occupy a special place because of their flexibility, ease of integration into any optoelectronic circuit, and good functioning in the visible and near-infrared spectral range and can compete with Glan and Nicolas volumetric prisms. This paper presents the results of a study on how carbon-based nanoparticles influence on the basic properties of a well-known PVA-based polymer matrix, using which it is possible to obtain good transparency for parallel light components. An accent is made on graphene oxide nanoparticles, which are used as PVA sensitizers. It was shown for the first time that the structuring of PVA with graphene oxides allows an increased transmittance of the parallel light component to be obtained, saving the transmittance of the orthogonal one. Moreover, the graphene network can increase the mechanical strength of such thin-film PVA-based polarizers and provoke a change in the wetting angle. These advantages make it possible to use graphene oxide-structured thin-film light polarizers based on a PVA matrix as an independent optoelectronic element. Some comparative results for polarizers based on PVA-C70 structures are shown as well. Full article
(This article belongs to the Special Issue Progress of Nanoscale Materials in Plasmonics and Photonics)
Show Figures

Figure 1

12 pages, 2163 KiB  
Article
Improving Durability of Dye-Based Polarizing Films Using Novel Reactive Dyes as Dichroic Materials
by Young Do Kim, Jea Uk Lee and Jung Jin Lee
Polymers 2023, 15(22), 4365; https://doi.org/10.3390/polym15224365 - 9 Nov 2023
Viewed by 1796
Abstract
Iodine is commonly used as a dichroic material in polarizing films, while dichroic dyes are employed when high heat resistance is necessary. Direct dyes, which can be applied to poly(vinyl alcohol) (PVA) in an acidic environment, are the most popular; however, their hydrogen [...] Read more.
Iodine is commonly used as a dichroic material in polarizing films, while dichroic dyes are employed when high heat resistance is necessary. Direct dyes, which can be applied to poly(vinyl alcohol) (PVA) in an acidic environment, are the most popular; however, their hydrogen bonding interaction with the PVA chain can weaken in high-humidity conditions, leading to a potential change in color value or polarization property. Reactive dyes offer a promising alternative for use in high-humidity environments. In this study, five novel reactive dyes were synthesized and used to prepare dye-based polarizing films. The dichroic ratios, order parameters, and transition moments of the reactive dyes were calculated and compared to those of corresponding direct dyes. Molecular orbital calculations indicated minimal effects on the optical anisotropy of the polarizing films due to the transition moments of the reactive dyes remaining close to their molecular axes. As a result, the dichroic ratios of the polarizing films were mainly dependent on the orientation of the dyes towards their stretching direction, and showed a similar behavior compared to direct dyes. Under high-temperature and high-humidity conditions, the polarizing film using reactive dyes showed superior durability compared to the direct dye-based film. Full article
(This article belongs to the Special Issue Advanced Polymer Hybrid Materials)
Show Figures

Figure 1

24 pages, 9135 KiB  
Article
Effect of Tamarind Gum on the Properties of Phase-Separated Poly(vinyl alcohol) Films
by Madhusmita Rawooth, SK Habibullah, Dilshad Qureshi, Deepti Bharti, Ankit Pal, Biswaranjan Mohanty, Maciej Jarzębski, Wojciech Smułek and Kunal Pal
Polymers 2022, 14(14), 2793; https://doi.org/10.3390/polym14142793 - 8 Jul 2022
Cited by 17 | Viewed by 3359
Abstract
The current study aims to evaluate the effect of tamarind gum (TG) on the optical, mechanical, and drug release potential of poly(vinyl alcohol) (PVA)-based films. This involves preparing PVA-TG composite films with different concentrations of TG through a simple solvent casting method. The [...] Read more.
The current study aims to evaluate the effect of tamarind gum (TG) on the optical, mechanical, and drug release potential of poly(vinyl alcohol) (PVA)-based films. This involves preparing PVA-TG composite films with different concentrations of TG through a simple solvent casting method. The addition of TG has enhanced the phase separation and aggregation of PVA within the films, and it becomes greater with the increase in TG concentration. Brightfield and polarized light micrographs have revealed that aggregation is favored by forming crystalline domains at the PVA-TG interface. The interconnected network of PVA-TG aggregates influenced the swelling and drying properties of the films. Using Peleg’s analysis, the mechanical behavior of films was determined by their stress relaxation profiles. The addition of TG has made no significant changes to the firmness and viscoelastic properties of films. However, long-durational relaxation times indicated that the interconnected network might break down in films with higher TG concentration, suggesting their brittleness. The controlled release of ciprofloxacin in HCl solution (0.5% (w/v)) appears to decrease with the increase in TG concentration. In fact, TG has inversely affected the impedance and altered the ionic conductivity within the films. This seems to have directly influenced the drug release from the films as the mechanism was found to be non-Fickian diffusion (based on Korsmeyer–Peepas and Peppas–Sahlin kinetic models). The antimicrobial study using Escherichia coli was carried out to evaluate the activity of the drug-loaded films. The study proves that TG can modulate the properties of PVA films and has the potential to fine-tune the controlled release of drugs from composite films. Full article
(This article belongs to the Special Issue Processing and Analysis of Natural Polymers)
Show Figures

Figure 1

10 pages, 2196 KiB  
Article
Effect of KI Concentration in Correcting Tank on Optical Properties of PVA Polarizing Film
by Yang Yang, Ziyuan Zheng, Jun Lin, Lintao Zhou and Guohua Chen
Polymers 2022, 14(7), 1413; https://doi.org/10.3390/polym14071413 - 30 Mar 2022
Cited by 5 | Viewed by 3221
Abstract
Polarizer is a key component of the liquid crystal display panel, and the optical properties mainly include transmittance, degree of polarization and chromaticity. Polarizer is made of a multilayer optical film, in which the PVA polarizing film is the core structure for realizing [...] Read more.
Polarizer is a key component of the liquid crystal display panel, and the optical properties mainly include transmittance, degree of polarization and chromaticity. Polarizer is made of a multilayer optical film, in which the PVA polarizing film is the core structure for realizing the polarization of the whole polarizer. PVA polarizing film is commonly manufactured through a multi-step craft, including rinsing, dyeing, stretching and correcting. The correction process has a significant impact on the final apparent color and optical properties of the polarizer. In this study, the KI concentration in the correcting tank, ranging from 1% to 3%, was systematically investigated. With the increase in KI concentration, the Raman vibration peak at 160 cm−1 representing I5 ions gradually weakened, while the Raman vibration peak at 110 cm−1 representing I3 ions gradually increased, indicating that the KI in the correcting tank changed the chemical equilibrium of polyiodide ions in PVA. Then abundant chromophore I5 ions were consumed and I3 ions generated, so that the apparent color of PVA polarizing film gradually changed from dark blue to dark gray, and the chromaticity a-value and b-value gradually increased. The change in the concentration of dichroic species (I5 and I3) in PVA polarizing film had directly affected its transmittance in the visible range. From the UV-Vis transmittance spectrum of PVA polarizing film, when the I5 ions were consumed and I3 ions generated, the transmittance of PVA polarizing film in the region of 675–525 nm wavelength increased gradually while the polarization degree also increased. Full article
(This article belongs to the Special Issue High Performance Polymer Membranes)
Show Figures

Figure 1

21 pages, 3471 KiB  
Article
The Study of Plasticized Amorphous Biopolymer Blend Electrolytes Based on Polyvinyl Alcohol (PVA): Chitosan with High Ion Conductivity for Energy Storage Electrical Double-Layer Capacitors (EDLC) Device Application
by Shujahadeen B. Aziz, Jihad M. Hadi, Elham M. A. Dannoun, Rebar T. Abdulwahid, Salah R. Saeed, Ayub Shahab Marf, Wrya O. Karim and Mohd F.Z. Kadir
Polymers 2020, 12(9), 1938; https://doi.org/10.3390/polym12091938 - 27 Aug 2020
Cited by 78 | Viewed by 5801
Abstract
In this study, plasticized films of polyvinyl alcohol (PVA): chitosan (CS) based electrolyte impregnated with ammonium thiocyanate (NH4SCN) were successfully prepared using a solution-casting technique. The structural features of the electrolyte films were investigated through the X-ray diffraction (XRD) pattern. The [...] Read more.
In this study, plasticized films of polyvinyl alcohol (PVA): chitosan (CS) based electrolyte impregnated with ammonium thiocyanate (NH4SCN) were successfully prepared using a solution-casting technique. The structural features of the electrolyte films were investigated through the X-ray diffraction (XRD) pattern. The enrichment of the amorphous phase with increasing glycerol concentration was confirmed by observing broad humps. The electrical impedance spectroscopy (EIS) portrays the improvement of ionic conductivity from 10−5 S/cm to 10−3 S/cm upon the addition of plasticizer. The electrolytes incorporated with 28 wt.% and 42 wt.% of glycerol were observed to be mainly ionic conductor as the ionic transference number measurement (TNM) was found to be 0.97 and 0.989, respectively. The linear sweep voltammetry (LSV) investigation indicates that the maximum conducting sample is stable up to 2 V. An electrolyte with the highest conductivity was used to make an energy storage electrical double-layer capacitor (EDLC) device. The cyclic voltammetry (CV) plot depicts no distinguishable peaks in the polarization curve, which means no redox reaction has occurred at the electrode/electrolyte interface. The fabricated EDLC displays the initial specific capacitance, equivalent series resistance, energy density, and power density of 35.5 F/g, 65 Ω, 4.9 Wh/kg, and 399 W/kg, respectively. Full article
(This article belongs to the Special Issue Application and Performance of Biopolymers)
Show Figures

Figure 1

10 pages, 2601 KiB  
Article
Near-Infrared Optical Modulation for Ultrashort Pulse Generation Employing Indium Monosulfide (InS) Two-Dimensional Semiconductor Nanocrystals
by Tao Wang, Jin Wang, Jian Wu, Pengfei Ma, Rongtao Su, Yanxing Ma and Pu Zhou
Nanomaterials 2019, 9(6), 865; https://doi.org/10.3390/nano9060865 - 7 Jun 2019
Cited by 18 | Viewed by 3789
Abstract
In recent years, metal chalcogenide nanomaterials have received much attention in the field of ultrafast lasers due to their unique band-gap characteristic and excellent optical properties. In this work, two-dimensional (2D) indium monosulfide (InS) nanosheets were synthesized through a modified liquid-phase exfoliation method. [...] Read more.
In recent years, metal chalcogenide nanomaterials have received much attention in the field of ultrafast lasers due to their unique band-gap characteristic and excellent optical properties. In this work, two-dimensional (2D) indium monosulfide (InS) nanosheets were synthesized through a modified liquid-phase exfoliation method. In addition, a film-type InS-polyvinyl alcohol (PVA) saturable absorber (SA) was prepared as an optical modulator to generate ultrashort pulses. The nonlinear properties of the InS-PVA SA were systematically investigated. The modulation depth and saturation intensity of the InS-SA were 5.7% and 6.79 MW/cm2, respectively. By employing this InS-PVA SA, a stable, passively mode-locked Yb-doped fiber laser was demonstrated. At the fundamental frequency, the laser operated at 1.02 MHz, with a pulse width of 486.7 ps, and the maximum output power was 1.91 mW. By adjusting the polarization states in the cavity, harmonic mode-locked phenomena were also observed. To our knowledge, this is the first time an ultrashort pulse output based on InS has been achieved. The experimental findings indicate that InS is a viable candidate in the field of ultrafast lasers due to its excellent saturable absorption characteristics, which thereby promotes the ultrafast optical applications of InX (X = S, Se, and Te) and expands the category of new SAs. Full article
(This article belongs to the Special Issue Non-Linear Optical Effects in Nanomaterials)
Show Figures

Graphical abstract

11 pages, 4539 KiB  
Article
Linearly Polarized UV Light-Induced Optical Anisotropy of PVA Films and Flexible Macrocycle Schiff Base Ni(II), Cu(II), Zn(II) Dinuclear Complexes
by Masahiro Takase, Shiomi Yagi, Tomoyuki Haraguchi, Shabana Noor and Takashiro Akitsu
Symmetry 2018, 10(12), 760; https://doi.org/10.3390/sym10120760 - 17 Dec 2018
Cited by 5 | Viewed by 3158
Abstract
Three dinuclear metal complexes (comprised of six-coordinated nNi2L and five-coordinated nCu2L and nZn2L) were confirmed by means of elemental analysis, UV-vis and IR spectra, and single X-ray crystal structural analysis in a spectroscopic study. The stable structures [...] Read more.
Three dinuclear metal complexes (comprised of six-coordinated nNi2L and five-coordinated nCu2L and nZn2L) were confirmed by means of elemental analysis, UV-vis and IR spectra, and single X-ray crystal structural analysis in a spectroscopic study. The stable structures of these nNi2L, nCu2L, and nZn2L complexes in poly(vinylalcohol) (PVA) films were analyzed using UV-vis spectra. The molecular orientation of hybrid PVA film materials after linearly polarized light irradiation was analyzed to obtain the polarized spectra and dichroic ratio. Among the three materials, nNi2L and nZn2L complexes indicated an increasing optical anisotropy that depended on the flexibility of the complexes. We have included a discussion on the formation of the pseudo-crystallographic symmetry of the components in a soft matter (PVA films). Full article
(This article belongs to the Special Issue Symmetry in Coordination Chemistry)
Show Figures

Figure 1

11 pages, 4109 KiB  
Article
Polarized Light-Induced Molecular Orientation Control of Rigid Schiff Base Ni(II), Cu(II), and Zn(II) Binuclear Complexes as Polymer Composites
by Hiroyuki Nakatori, Tomoyuki Haraguchi and Takashiro Akitsu
Symmetry 2018, 10(5), 147; https://doi.org/10.3390/sym10050147 - 7 May 2018
Cited by 7 | Viewed by 3373
Abstract
We have investigated linearly polarized UV light-induced molecular orientation due to Weigert effect of composite materials of new six binuclear nickel(II), copper(II), and zinc(II) complexes of two rigid Schiff base ring ligands (L1 and L2) composite materials with methyl [...] Read more.
We have investigated linearly polarized UV light-induced molecular orientation due to Weigert effect of composite materials of new six binuclear nickel(II), copper(II), and zinc(II) complexes of two rigid Schiff base ring ligands (L1 and L2) composite materials with methyl orange (MO), an azo-dye, in polyvinylalchol (PVA) cast films. To compare the degree of molecular orientation, two ligands, namely flexible aliphatic cyclohexane (ML1: NiL1, CuL1, ZnL1) and rigid aromatic (ML2: NiL2, CuL2, ZnL2), were synthesized using amine moiety. We have also characterized these complexes by means of elemental analysis, IR, and UV-vis spectra, single crystal or powder X-ray diffraction (XRD) analysis, and so on. Composite materials of ML1 or ML2+MO+PVA were also prepared to separately disperse the solutes in a polymer matrix. For any metal complexes, optical anisotropy (represented as the R parameters) of ML2+MO+PVA was larger than ML1+MO+PVA because of the rigidness of the ligands. Full article
(This article belongs to the Special Issue Symmetry in Coordination Chemistry)
Show Figures

Figure 1

Back to TopTop