Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = PLA/PMMA blends

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8763 KB  
Article
Development of Cellulose Nanocrystal (CNC)-Reinforced PLA/PMMA Nanocomposite Coatings for Sustainable Paper-Based Packaging
by Milad Parhizgar, Mohammad Azadfallah, Alireza Kaboorani, Akbar Mastouri and Mariaenrica Frigione
Polymers 2026, 18(2), 175; https://doi.org/10.3390/polym18020175 - 8 Jan 2026
Viewed by 94
Abstract
Driven by environmental concerns, the packaging industry is shifting toward high-performance and bio-based coating alternatives. In this research, poly(methylmethacrylate) (PMMA) and modified cellulose nanocrystal (m-CNC) were employed as reinforcing agents to develop sustainable poly (lactic acid)-based coatings for packaging applications. Various formulations, influenced [...] Read more.
Driven by environmental concerns, the packaging industry is shifting toward high-performance and bio-based coating alternatives. In this research, poly(methylmethacrylate) (PMMA) and modified cellulose nanocrystal (m-CNC) were employed as reinforcing agents to develop sustainable poly (lactic acid)-based coatings for packaging applications. Various formulations, influenced by polymer matrix blends and m-CNC loadings (1–5%), were prepared using solvent and applied as protective coating on cardboard paper substrates. The grammage of polymeric coatings (CG) on paper was also investigated using various wet film thicknesses (i.e., 150–250 μm). Accordingly, key parameters including water contact angle, thermal behavior, mechanical performances and barrier properties were systematically evaluated to assess the effectiveness of the developed nanocomposite coatings. As a result, nonylphenol ethoxylate surfactant-modified cellulose nanocrystals exhibited good dispersion and stable suspension in chloroform for one hour, improving compatibility and interaction of polymer–CNC fillers. The water vapor permeability (WVP) of PLA-coated papers was significantly reduced by blending PMMA and increasing the content of m-CNC nanofillers. Furthermore, CNC incorporation enhanced the oil resistance of PLA/PMMA-coated cardboard. Pronounced improvements in barrier properties were observed for paper substrates coated with dry coat weight or CG of ~20 g/m2 (corresponding to 250 μm wet film thickness). Coatings based on blended polymer—particularly those reinforced with nanofillers—markedly enhanced the hydrophobicity of the cardboard papers. SEM-microscopy confirmed the structural integrity and morphology of the nanocomposite coatings. Regarding mechanical properties, the upgraded nanocomposite copolymer (PLA-75%/PMMA-25%/m-CNC3%) exhibited the highest bending test and tensile strength, achieved on coated papers and free-standing polymeric films, respectively. Based on DSC analysis, the thermal characteristics of the PLA matrix were influenced to some extent by the presence of PMMA and m-CNC. Overall, PLA/PMMA blends with an optimal amount of CNC nanofillers offer promising sustainable coatings for the packaging applications. Full article
(This article belongs to the Special Issue Functional Polymeric Materials for Food Packaging Applications)
Show Figures

Figure 1

17 pages, 3427 KB  
Article
Heat-Resistant Behavior of PLA/PMMA Transparent Blends Induced by Nucleating Agents
by Jiafeng Li, Yanjun Feng, Jianwei Yang, Zhengqiu Li and Zhixin Zhao
Appl. Sci. 2025, 15(12), 6738; https://doi.org/10.3390/app15126738 - 16 Jun 2025
Cited by 1 | Viewed by 979
Abstract
Poly(lactic acid) (PLA) holds significant promise as an option in the field of packaging materials due to its biodegradability and antibacterial properties. Therefore, it is vital for developing packaging materials while improving their heat resistance, and transparency is essential for guaranteeing its application. [...] Read more.
Poly(lactic acid) (PLA) holds significant promise as an option in the field of packaging materials due to its biodegradability and antibacterial properties. Therefore, it is vital for developing packaging materials while improving their heat resistance, and transparency is essential for guaranteeing its application. Using a self-assembled nucleating agent with hydrogen bonding and thermodynamically compatible transparent polymethyl methacrylate (PMMA), this study fabricated PLA micro-crystals with an interface blurred grain. Furthermore, the crystalline structure-property relationship was investigated in different isothermal crystallization conditions; it was possible to achieve higher crystallinity while maintaining the transparency of PLA/10 wt% PMMA/0.3 wt% nucleating agent blends. Compared to other temperatures, the crystallization rate of PLA blends under annealing conditions at 90 °C was higher when induced by three different nucleating agents. Particularly, in the presence of the TC-328 nucleating agent, the system exhibited a crystallinity of 32%, the smallest grain size, and an increased Tg of 61.3 °C, as well as an elevated heat deformation temperature (HDT) from 54.13 °C to 63.2 °C. The smaller nucleating agents with high surface energy enhanced the interaction between the PLA and PMMA, enhancing the PLA/PMMA tensile strength and HDT. These findings may pave the way for designing novel blends for packaging or heat-resistant devices. Full article
Show Figures

Figure 1

19 pages, 3426 KB  
Article
PLA/PMMA Reactive Blending in the Presence of MgO as an Exchange Reaction Catalyst
by Masoud Komeijani, Naeimeh Bahri-Laleh, Zohreh Mirjafary, Massimo Christian D’Alterio, Morteza Rouhani, Hossein Sakhaeinia, Amin Hedayati Moghaddam, Seyed Amin Mirmohammadi and Albert Poater
Polymers 2025, 17(7), 845; https://doi.org/10.3390/polym17070845 - 21 Mar 2025
Cited by 5 | Viewed by 1231
Abstract
To address the limitations of poly (lactic acid) (PLA), it was blended with poly (methyl methacrylate) (PMMA) as a toughening component, using MgO nanoparticles (NPs, 0.075–0.15 wt%) as a catalyst. SEM pictures confirmed the good miscibility of the blends. Mechanical tests showed a [...] Read more.
To address the limitations of poly (lactic acid) (PLA), it was blended with poly (methyl methacrylate) (PMMA) as a toughening component, using MgO nanoparticles (NPs, 0.075–0.15 wt%) as a catalyst. SEM pictures confirmed the good miscibility of the blends. Mechanical tests showed a slight decrease in elastic modulus and tensile strength for the PLA/PMMA125 sample containing 0.125% MgO. Yet, elongation at break rose by over 60% and impact strength increased by over 400% compared to pure PLA. Also, MgO facilitated the shifting of the glass transition temperature (Tg) of both polymers in DSC curves. Additionally, the absence of cold crystallization in PLA, coupled with reductions in its melting temperature (Tm) and crystallinity, were identified as critical factors contributing to improved miscibility within the reactive blend. Melt flow index (MFI) evaluation indicated a decrease in viscosity, while water contact angle measurements revealed an increase in polar groups on the surfaces of the MgO-containing samples. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses confirmed the effective distribution and dispersion of NPs throughout the blend, along with a significant decrease in crystallinity. Moreover, DFT calculations were performed to better understand the role of MgO in the reaction. The findings offered key insights into the reaction mechanism, confirming that MgO plays a crucial role in facilitating the transesterification between PLA and PMMA. These findings underscore the enhanced performance of exchange reactions between the active groups of both polymers in the presence of MgO, leading to the formation of PLA-PMMA copolymers with superior miscibility and mechanical properties. Finally, a cell culture assay confirmed the blend’s non-toxicity, showing its versatile potential. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

19 pages, 8799 KB  
Article
Phase Structure and Properties of Ternary Polylactide/Poly(methyl methacrylate)/Polysilsesquioxane Blends
by Anna Kowalewska, Agata S. Herc, Joanna Bojda, Maria Nowacka, Mariia Svyntkivska, Ewa Piorkowska, Witold Kaczorowski and Witold Szymański
Polymers 2021, 13(7), 1033; https://doi.org/10.3390/polym13071033 - 26 Mar 2021
Cited by 4 | Viewed by 3714
Abstract
Ternary blends of polylactide (PLA, 90 wt.%) and poly(methyl methacrylate) (PMMA, 10 wt.%) with functionalized polysilsesquioxanes (LPSQ-R) were obtained by solution blending. R groups in LPSQ containing hydroxyethyl (LPSQ-OH), methylglycolic (LPSQ-COOMe) and pentafluorophenyl (LPSQ-F5) moieties of different chemical properties were designed to modify [...] Read more.
Ternary blends of polylactide (PLA, 90 wt.%) and poly(methyl methacrylate) (PMMA, 10 wt.%) with functionalized polysilsesquioxanes (LPSQ-R) were obtained by solution blending. R groups in LPSQ containing hydroxyethyl (LPSQ-OH), methylglycolic (LPSQ-COOMe) and pentafluorophenyl (LPSQ-F5) moieties of different chemical properties were designed to modify PLA blends with PMMA. The effect of the type of LPSQ-R and their content, 1–3 wt.%, on the structure of the blends was studied with scanning electron microscopy (SEM) combined with energy dispersive spectroscopy (SEM-EDS), dynamic mechanical thermal analysis (DMTA) and Raman spectroscopy. Differential scanning calorimetry (DSC) and tensile tests also showed various effects of LPSQ-R on the thermal and mechanical properties of the blends. Depth-sensing indentation was used to resolve spatially the micro- and nano-scale mechanical properties (hardness and elastic behaviour) of the blends. The results showed clearly that LPSQ-R modulate the structure and properties of the blends. Full article
(This article belongs to the Special Issue Organosilicon Polymers: From New Structures towards New Properties)
Show Figures

Graphical abstract

17 pages, 8934 KB  
Article
Effect of PMMA/Silica Hybrid Particles on Interfacial Adhesion and Crystallization Properties of Poly(lactic acid)/Block Acrylic Elastomer Composites
by Gi Hong Kim, Sung Wook Hwang, Bich Nam Jung, DongHo Kang, Jin Kie Shim and Kwan Ho Seo
Polymers 2020, 12(10), 2231; https://doi.org/10.3390/polym12102231 - 28 Sep 2020
Cited by 9 | Viewed by 4344
Abstract
Poly(lactic acid) (PLA) is a relatively brittle polymer, and its low melt strength, ductility, and thermal stability limit its use in various industrial applications. This study aimed to investigate the effect of poly(methyl methacrylate) (PMMA) and PMMA/silica hybrid particles on the mechanical properties, [...] Read more.
Poly(lactic acid) (PLA) is a relatively brittle polymer, and its low melt strength, ductility, and thermal stability limit its use in various industrial applications. This study aimed to investigate the effect of poly(methyl methacrylate) (PMMA) and PMMA/silica hybrid particles on the mechanical properties, interfacial adhesion, and crystallization behavior of PLA/block acrylic elastomer. PLA/block acrylic elastomer blends exhibit improved flexibility; however, phase separation occurs between PLA and block acrylic elastomer domains. Valid time-temperature superposition (TTS) measurements of viscoelastic behavior were obtained and exhibited interfacial adhesion with the addition of PMMA or PMMA/silica in PLA/block acrylic elastomer blends. In particular, the phase separation temperature was increased by the incorporation of PMMA/silica hybrid particles, which suggests a potential role for these particles in improving the phase stability. In addition, PMMA inhibits crystallization, while PMMA/silica acts as a nucleating agent, thus increasing the crystallization rate and crystallinity degree. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop