Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = PCDH19 epilepsy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1494 KiB  
Article
Triplication of the PCDH19 Gene as a Novel Disease Mechanism Leading to Epileptic Encephalopathy Resembling Loss-of-Function Pathogenic Variants
by Alba Gabaldón-Albero, Patricia Smeyers, Sara Hernández-Muela, Mónica Roselló, Carmen Orellana, Sandra Monfort, Silvestre Oltra and Francisco Martínez
Genes 2024, 15(10), 1312; https://doi.org/10.3390/genes15101312 - 12 Oct 2024
Viewed by 1552
Abstract
Background/Objectives: Developmental and epileptic encephalopathy 9 (DEE9) (MIM #300088) affects heterozygous females and males with somatic pathogenic variants, while male carriers with hemizygous PCDH19 pathogenic variants are clinically unaffected. There are hundreds of pathogenic single nucleotide variants in the PCDH19 gene reported in [...] Read more.
Background/Objectives: Developmental and epileptic encephalopathy 9 (DEE9) (MIM #300088) affects heterozygous females and males with somatic pathogenic variants, while male carriers with hemizygous PCDH19 pathogenic variants are clinically unaffected. There are hundreds of pathogenic single nucleotide variants in the PCDH19 gene reported in the literature, which lead to the loss of function of the PCDH19 protein. To date, no phenotypes associated with overexpression or copy number gains have been described in this gene. Methods and results: We present a female patient with a de novo triplication in the Xq21.3–q22.1 chromosomal region, which includes the PCDH19 gene, which implies an unbalanced dose gain. This patient displayed a phenotype of epileptic encephalopathy compatible with DEE9. By comparison, another male patient with a similar duplication showed mild developmental delay and autism but never developed epilepsy. Conclusions: Here, we propose the dose gain of PCDH19 as a new pathogenic mechanism that results in a phenotype similar to that found in patients with loss-of-function variants in PCDH19, when present in a heterozygous state. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

12 pages, 1175 KiB  
Article
NGS-Based Identification of Two Novel PCDH19 Mutations in Female Patients with Early-Onset Epilepsy
by Renata Szalai, Kinga Hadzsiev, Agnes Till, Andras Fogarasi, Timea Bodo, Gergely Buki, Zsolt Banfai and Judit Bene
Int. J. Mol. Sci. 2024, 25(11), 5732; https://doi.org/10.3390/ijms25115732 - 24 May 2024
Viewed by 1821
Abstract
Developmental and epileptic encephalopathy-9 (DEE9) is characterized by seizure onset in infancy, mild to severe intellectual impairment, and psychiatric features and is caused by a mutation in the PCDH19 gene on chromosome Xq22. The rare, unusual X-linked type of disorder affects heterozygous females [...] Read more.
Developmental and epileptic encephalopathy-9 (DEE9) is characterized by seizure onset in infancy, mild to severe intellectual impairment, and psychiatric features and is caused by a mutation in the PCDH19 gene on chromosome Xq22. The rare, unusual X-linked type of disorder affects heterozygous females and mosaic males; transmitting males are unaffected. In our study, 165 patients with epilepsy were tested by Next Generation Sequencing (NGS)-based panel and exome sequencing using Illumina technology. PCDH19 screening identified three point mutations, one indel, and one 29 bp-long deletion in five unrelated female probands. Two novel mutations, c.1152_1180del (p.Gln385Serfs*6) and c.830_831delinsAA (p.Phe277*), were identified and found to be de novo pathogenic. Moreover, among the three inherited mutations, two originated from asymptomatic mothers and one from an affected father. The PCDH19 c.1682C>T and c.1711G>T mutations were present in the DNA samples of asymptomatic mothers. After targeted parental testing, X chromosome inactivation tests and Sanger sequencing were carried out for mosaicism examination on maternal saliva samples in the two asymptomatic PCDH19 mutation carrier subjects. Tissue mosaicism and X-inactivation tests were negative. Our results support the opportunity for reduced penetrance in DEE9 and contribute to expanding the genotype–phenotype spectrum of PCDH19-related epilepsy. Full article
(This article belongs to the Special Issue Genetic, Genomic and Metabolomic Investigation of Rare Diseases)
Show Figures

Figure 1

30 pages, 18286 KiB  
Review
X-Linked Epilepsies: A Narrative Review
by Pia Bernardo, Claudia Cuccurullo, Marica Rubino, Gabriella De Vita, Gaetano Terrone, Leonilda Bilo and Antonietta Coppola
Int. J. Mol. Sci. 2024, 25(7), 4110; https://doi.org/10.3390/ijms25074110 - 8 Apr 2024
Cited by 4 | Viewed by 3947
Abstract
X-linked epilepsies are a heterogeneous group of epileptic conditions, which often overlap with X-linked intellectual disability. To date, various X-linked genes responsible for epilepsy syndromes and/or developmental and epileptic encephalopathies have been recognized. The electro-clinical phenotype is well described for some genes in [...] Read more.
X-linked epilepsies are a heterogeneous group of epileptic conditions, which often overlap with X-linked intellectual disability. To date, various X-linked genes responsible for epilepsy syndromes and/or developmental and epileptic encephalopathies have been recognized. The electro-clinical phenotype is well described for some genes in which epilepsy represents the core symptom, while less phenotypic details have been reported for other recently identified genes. In this review, we comprehensively describe the main features of both X-linked epileptic syndromes thoroughly characterized to date (PCDH19-related DEE, CDKL5-related DEE, MECP2-related disorders), forms of epilepsy related to X-linked neuronal migration disorders (e.g., ARX, DCX, FLNA) and DEEs associated with recently recognized genes (e.g., SLC9A6, SLC35A2, SYN1, ARHGEF9, ATP6AP2, IQSEC2, NEXMIF, PIGA, ALG13, FGF13, GRIA3, SMC1A). It is often difficult to suspect an X-linked mode of transmission in an epilepsy syndrome. Indeed, different models of X-linked inheritance and modifying factors, including epigenetic regulation and X-chromosome inactivation in females, may further complicate genotype–phenotype correlations. The purpose of this work is to provide an extensive and updated narrative review of X-linked epilepsies. This review could support clinicians in the genetic diagnosis and treatment of patients with epilepsy featuring X-linked inheritance. Full article
(This article belongs to the Special Issue Molecular Advances in Epilepsy and Seizures)
Show Figures

Figure 1

20 pages, 334 KiB  
Review
Genetic Background of Epilepsy and Antiepileptic Treatments
by Kinga Borowicz-Reutt, Julia Czernia and Marlena Krawczyk
Int. J. Mol. Sci. 2023, 24(22), 16280; https://doi.org/10.3390/ijms242216280 - 14 Nov 2023
Cited by 16 | Viewed by 5374
Abstract
Advanced identification of the gene mutations causing epilepsy syndromes is expected to translate into faster diagnosis and more effective treatment of these conditions. Over the last 5 years, approximately 40 clinical trials on the treatment of genetic epilepsies have been conducted. As a [...] Read more.
Advanced identification of the gene mutations causing epilepsy syndromes is expected to translate into faster diagnosis and more effective treatment of these conditions. Over the last 5 years, approximately 40 clinical trials on the treatment of genetic epilepsies have been conducted. As a result, some medications that are not regular antiseizure drugs (e.g., soticlestat, fenfluramine, or ganaxolone) have been introduced to the treatment of drug-resistant seizures in Dravet, Lennox-Gastaut, maternally inherited chromosome 15q11.2-q13.1 duplication (Dup 15q) syndromes, and protocadherin 19 (PCDH 19)-clusterig epilepsy. And although the effects of soticlestat, fenfluramine, and ganaxolone are described as promising, they do not significantly affect the course of the mentioned epilepsy syndromes. Importantly, each of these syndromes is related to mutations in several genes. On the other hand, several mutations can occur within one gene, and different gene variants may be manifested in different disease phenotypes. This complex pattern of inheritance contributes to rather poor genotype–phenotype correlations. Hence, the detection of a specific mutation is not synonymous with a precise diagnosis of a specific syndrome. Bearing in mind that seizures develop as a consequence of the predominance of excitatory over inhibitory processes, it seems reasonable that mutations in genes encoding sodium and potassium channels, as well as glutamatergic and gamma-aminobutyric (GABA) receptors, play a role in the pathogenesis of epilepsy. In some cases, different pathogenic variants of the same gene can result in opposite functional effects, determining the effectiveness of therapy with certain medications. For instance, seizures related to gain-of-function (GoF) mutations in genes encoding sodium channels can be successfully treated with sodium channel blockers. On the contrary, the same drugs may aggravate seizures related to loss-of-function (LoF) variants of the same genes. Hence, knowledge of gene mutation–treatment response relationships facilitates more favorable selection of drugs for anticonvulsant therapy. Full article
(This article belongs to the Special Issue Molecular Research in Epilepsy and Epileptogenesis)
13 pages, 3322 KiB  
Article
Genotype–Phenotype Analysis of Children with Epilepsy Referred for Whole-Exome Sequencing at a Tertiary Care University Hospital
by Fahad A. Bashiri, Rawan AlSheikh, Muddathir H. Hamad, Hamad Alsheikh, Rana Abdullah Alsheikh, Amal Kentab, Najd AlTheeb and Malak Alghamdi
Children 2023, 10(8), 1334; https://doi.org/10.3390/children10081334 - 1 Aug 2023
Cited by 3 | Viewed by 2256
Abstract
Background: Despite the high consanguinity rates, data on genetic epilepsy in Saudi Arabia is limited. The objective of the current study was to characterize genetic mutations associated with epilepsy in pediatric patients and describe their phenotypic presentations. Methods: A retrospective chart review was [...] Read more.
Background: Despite the high consanguinity rates, data on genetic epilepsy in Saudi Arabia is limited. The objective of the current study was to characterize genetic mutations associated with epilepsy in pediatric patients and describe their phenotypic presentations. Methods: A retrospective chart review was conducted among children presented with epilepsy in one center in Saudi Arabia between 2015 and 2018. Only those who had undergone genetic testing were included. Results: A total of 45 patients had positive whole-exome sequencing (WES) genetic testing with 37 mutations. Six mutations (SCN1A, DENND5A, KCNQ2, ACY1, SCN2A, and PCDH19) were repeated in 15 patients, with largely heterogeneous phenotypic presentations in patients with the same mutation. Several mutations are reported for the first time in Saudi Arabia. The median age at epilepsy onset was four months. Consanguineous parents and family history of epilepsy were frequent (31.8% and 33.3%, respectively). Developmental delay (44.4%), cognitive delay (42.2%), language delay (40.0%), behavioral features (28.9%), and microcephaly (20.0%) were frequent presentations. At initial diagnosis, 68.9% of EEG and 48.9% of brain MRI were abnormal. The most currently used antiseizure medications (ASMs) were levetiracetam (48.9%), topiramate (28.9%), and valproic acid (20.0%). Approximately 60% of the patients were controlled with (47.6%) or without (11.9%) ASMs, and three (7.1%) patients died. Conclusions: Multiple mutations among children with epilepsy are reported in one hospital in Saudi Arabia, with the majority reported for the first time. The current findings highlight the importance of doing genetic testing for the evaluation of childhood epilepsy. Full article
(This article belongs to the Special Issue Diagnosis and Treatment in Childhood Epilepsy)
Show Figures

Figure 1

9 pages, 270 KiB  
Article
PCDH19 in Males: Are Hemizygous Variants Linked to Autism?
by Eliane Chouery, Jana Makhlouf, Wassim Daoud Khatoun, Cybel Mehawej and Andre Megarbane
Genes 2023, 14(3), 598; https://doi.org/10.3390/genes14030598 - 27 Feb 2023
Cited by 6 | Viewed by 3029
Abstract
Background: Autism spectrum disorder (ASD) is a complex developmental disability that impairs the social communication and interaction of affected individuals and leads to restricted or repetitive behaviors or interests. ASD is genetically heterogeneous, with inheritable and de novo genetic variants in more than [...] Read more.
Background: Autism spectrum disorder (ASD) is a complex developmental disability that impairs the social communication and interaction of affected individuals and leads to restricted or repetitive behaviors or interests. ASD is genetically heterogeneous, with inheritable and de novo genetic variants in more than hundreds of genes contributing to the disease. However, these account for only around 20% of cases, while the molecular basis of the majority of cases remains unelucidated as of yet. Material and methods: Two unrelated Lebanese patients, a 7-year-old boy (patient A) and a 4-year-old boy (patient B), presenting with ASD were included in this study. Whole-exome sequencing (WES) was carried out for these patients to identify the molecular cause of their diseases. Results: WES analysis revealed hemizygous variants in PCDH19 (NM_001184880.1) as being the candidate causative variants: p.Arg787Leu was detected in patient A and p.Asp1024Asn in patient B. PCDH19, located on chromosome X, encodes a membrane glycoprotein belonging to the protocadherin family. Heterozygous PCDH19 variants have been linked to epilepsy in females with mental retardation (EFMR), while mosaic PCDH19 mutations in males are responsible for treatment-resistant epilepsy presenting similarly to EFMR, with some reported cases of comorbid intellectual disability and autism. Interestingly, a hemizygous PCDH19 variant affecting the same amino acid that is altered in patient A was previously reported in a male patient with ASD. Conclusion: Here, we report hemizygous PCDH19 variants in two males with autism without epilepsy. Reporting further PCDH19 variants in male patients with ASD is important to assess the possible involvement of this gene in autism. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
16 pages, 15054 KiB  
Article
Perturbation of Cortical Excitability in a Conditional Model of PCDH19 Disorder
by Didi Lamers, Silvia Landi, Roberta Mezzena, Laura Baroncelli, Vinoshene Pillai, Federica Cruciani, Sara Migliarini, Sara Mazzoleni, Massimo Pasqualetti, Maria Passafaro, Silvia Bassani and Gian Michele Ratto
Cells 2022, 11(12), 1939; https://doi.org/10.3390/cells11121939 - 16 Jun 2022
Cited by 6 | Viewed by 3611
Abstract
PCDH19 epilepsy (DEE9) is an X-linked syndrome associated with cognitive and behavioral disturbances. Since heterozygous females are affected, while mutant males are spared, it is likely that DEE9 pathogenesis is related to disturbed cell-to-cell communication associated with mosaicism. However, the effects of mosaic [...] Read more.
PCDH19 epilepsy (DEE9) is an X-linked syndrome associated with cognitive and behavioral disturbances. Since heterozygous females are affected, while mutant males are spared, it is likely that DEE9 pathogenesis is related to disturbed cell-to-cell communication associated with mosaicism. However, the effects of mosaic PCDH19 expression on cortical networks are unknown. We mimicked the pathology of DEE9 by introducing a patch of mosaic protein expression in one hemisphere of the cortex of conditional PCDH19 knockout mice one day after birth. In the contralateral area, PCDH19 expression was unaffected, thus providing an internal control. In this model, we characterized the physiology of the disrupted network using local field recordings and two photon Ca2+ imaging in urethane anesthetized mice. We found transient episodes of hyperexcitability in the form of brief hypersynchronous spikes or bursts of field potential oscillations in the 9–25 Hz range. Furthermore, we observed a strong disruption of slow wave activity, a crucial component of NREM sleep. This phenotype was present also when PCDH19 loss occurred in adult mice, demonstrating that PCDH19 exerts a function on cortical circuitry outside of early development. Our results indicate that a focal mosaic mutation of PCDH19 disrupts cortical networks and broaden our understanding of DEE9. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

14 pages, 724 KiB  
Review
Modeling PCDH19-CE: From 2D Stem Cell Model to 3D Brain Organoids
by Rossella Borghi, Valentina Magliocca, Marina Trivisano, Nicola Specchio, Marco Tartaglia, Enrico Bertini and Claudia Compagnucci
Int. J. Mol. Sci. 2022, 23(7), 3506; https://doi.org/10.3390/ijms23073506 - 23 Mar 2022
Cited by 1 | Viewed by 4508
Abstract
PCDH19 clustering epilepsy (PCDH19-CE) is a genetic disease characterized by a heterogeneous phenotypic spectrum ranging from focal epilepsy with rare seizures and normal cognitive development to severe drug-resistant epilepsy associated with intellectual disability and autism. Unfortunately, little is known about the pathogenic mechanism [...] Read more.
PCDH19 clustering epilepsy (PCDH19-CE) is a genetic disease characterized by a heterogeneous phenotypic spectrum ranging from focal epilepsy with rare seizures and normal cognitive development to severe drug-resistant epilepsy associated with intellectual disability and autism. Unfortunately, little is known about the pathogenic mechanism underlying this disease and an effective treatment is lacking. Studies with zebrafish and murine models have provided insights on the function of PCDH19 during brain development and how its altered function causes the disease, but these models fail to reproduce the human phenotype. Induced pluripotent stem cell (iPSC) technology has provided a complementary experimental approach for investigating the pathogenic mechanisms implicated in PCDH19-CE during neurogenesis and studying the pathology in a more physiological three-dimensional (3D) environment through the development of brain organoids. We report on recent progress in the development of human brain organoids with a particular focus on how this 3D model may shed light on the pathomechanisms implicated in PCDH19-CE. Full article
(This article belongs to the Special Issue Pluripotent Stem Cells 2021)
Show Figures

Figure 1

14 pages, 1690 KiB  
Review
Protocadherin 19 Clustering Epilepsy and Neurosteroids: Opportunities for Intervention
by Rebekah de Nys, Raman Kumar and Jozef Gecz
Int. J. Mol. Sci. 2021, 22(18), 9769; https://doi.org/10.3390/ijms22189769 - 9 Sep 2021
Cited by 5 | Viewed by 3456
Abstract
Steroids yield great influence on neurological development through nuclear hormone receptor (NHR)-mediated gene regulation. We recently reported that cell adhesion molecule protocadherin 19 (encoded by the PCDH19 gene) is involved in the coregulation of steroid receptor activity on gene expression. PCDH19 variants cause [...] Read more.
Steroids yield great influence on neurological development through nuclear hormone receptor (NHR)-mediated gene regulation. We recently reported that cell adhesion molecule protocadherin 19 (encoded by the PCDH19 gene) is involved in the coregulation of steroid receptor activity on gene expression. PCDH19 variants cause early-onset developmental epileptic encephalopathy clustering epilepsy (CE), with altered steroidogenesis and NHR-related gene expression being identified in these individuals. The implication of hormonal pathways in CE pathogenesis has led to the investigation of various steroid-based antiepileptic drugs in the treatment of this disorder, with mixed results so far. Therefore, there are many unmet challenges in assessing the antiseizure targets and efficiency of steroid-based therapeutics for CE. We review and assess the evidence for and against the implication of neurosteroids in the pathogenesis of CE and in view of their possible clinical benefit. Full article
(This article belongs to the Special Issue Molecular Factors of Intellectual Disability Syndromes)
Show Figures

Figure 1

24 pages, 9187 KiB  
Article
Dissecting the Role of PCDH19 in Clustering Epilepsy by Exploiting Patient-Specific Models of Neurogenesis
by Rossella Borghi, Valentina Magliocca, Stefania Petrini, Libenzio Adrian Conti, Sandra Moreno, Enrico Bertini, Marco Tartaglia and Claudia Compagnucci
J. Clin. Med. 2021, 10(13), 2754; https://doi.org/10.3390/jcm10132754 - 23 Jun 2021
Cited by 16 | Viewed by 4311
Abstract
PCDH19-related epilepsy is a rare genetic disease caused by defective function of PCDH19, a calcium-dependent cell–cell adhesion protein of the cadherin superfamily. This disorder is characterized by a heterogeneous phenotypic spectrum, with partial and generalized febrile convulsions that are gradually increasing in frequency. [...] Read more.
PCDH19-related epilepsy is a rare genetic disease caused by defective function of PCDH19, a calcium-dependent cell–cell adhesion protein of the cadherin superfamily. This disorder is characterized by a heterogeneous phenotypic spectrum, with partial and generalized febrile convulsions that are gradually increasing in frequency. Developmental regression may occur during disease progression. Patients may present with intellectual disability (ID), behavioral problems, motor and language delay, and a low motor tone. In most cases, seizures are resistant to treatment, but their frequency decreases with age, and some patients may even become seizure-free. ID generally persists after seizure remission, making neurological abnormalities the main clinical issue in affected individuals. An effective treatment is lacking. In vitro studies using patient-derived induced pluripotent stem cells (iPSCs) reported accelerated neural differentiation as a major endophenotype associated with PCDH19 mutations. By using this in vitro model system, we show that accelerated in vitro neurogenesis is associated with a defect in the cell division plane at the neural progenitors stage. We also provide evidence that altered PCDH19 function affects proper mitotic spindle orientation. Our findings identify an altered equilibrium between symmetric versus asymmetric cell division as a previously unrecognized mechanism contributing to the pathogenesis of this rare epileptic encephalopathy. Full article
(This article belongs to the Special Issue New Frontiers in Neurodevelopmental Disorders)
Show Figures

Figure 1

Back to TopTop