Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = P. cynomolgi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1363 KB  
Case Report
Molecular and Microscopic Challenges in Detecting Plasmodium cynomolgi Co-Infections with Plasmodium vivax: A Case Report
by Mohd Adilin Yaacob, Raden Shamilah Radin Hisam, Nor Parina Ismail, Noor Azian Md Yusuf, Jose Miguel Rubio Muñoz, Suhana Hashim and Tam Jenn Zhueng
Pathogens 2025, 14(7), 651; https://doi.org/10.3390/pathogens14070651 - 30 Jun 2025
Viewed by 1239
Abstract
The risk of non-human primate (NHP) malaria transmission to humans is increasing, with Plasmodium knowlesi and Plasmodium cynomolgi emerging as significant zoonotic threats, particularly in Malaysia. While P. knowlesi is well-documented, P. cynomolgi infections in humans remain underreported, largely due to diagnostic challenges. [...] Read more.
The risk of non-human primate (NHP) malaria transmission to humans is increasing, with Plasmodium knowlesi and Plasmodium cynomolgi emerging as significant zoonotic threats, particularly in Malaysia. While P. knowlesi is well-documented, P. cynomolgi infections in humans remain underreported, largely due to diagnostic challenges. Routine microscopy and standard molecular diagnostic tools often misdiagnose P. cynomolgi infections as P. vivax due to morphological similarities and genetic homology. We report a new case of a human P. cynomolgi infection misdiagnosed as Plasmodium vivax in a 32-year-old male with no prior malaria history or travel to endemic countries. The initial diagnoses made by the microscopy and qPCR conducted by the Kota Bharu Public Health Laboratory in Kelantan identified the infection as P. vivax. However, cross-examination by the Institute for Medical Research (IMR) revealed the presence of mixed-species infection, prompting further analysis. The real-time PCR and sequencing performed at MAPELAB, Spain, confirmed the co-infection of P. vivax and P. cynomolgi. This case highlights the diagnostic limitations in detecting P. cynomolgi, which shares high genetic similarity with P. vivax, leading to potential cross-reactivity and diagnostic inaccuracies. As P. cynomolgi emerges as the second zoonotic malaria species after P. knowlesi capable of infecting humans in Southeast Asia, improved diagnostic methods are urgently needed. Enhanced molecular diagnostics and comprehensive epidemiological studies are essential to elucidate transmission dynamics, assess public health implications, and inform effective malaria control strategies. Full article
(This article belongs to the Special Issue Parasites and Zoonotic Diseases)
Show Figures

Figure 1

17 pages, 2400 KB  
Article
Generation of a Transgenic Plasmodium cynomolgi Parasite Expressing Plasmodium vivax Circumsporozoite Protein for Testing P. vivax CSP-Based Malaria Vaccines in Non-Human Primates
by Maya Aleshnick, Shreeya Hegde, Charlie Jennison, Sebastian A. Mikolajczak, Ashley M. Vaughan, Derek Haumpy, Thomas Martinson, Judith Straimer and Brandon K. Wilder
Vaccines 2025, 13(5), 536; https://doi.org/10.3390/vaccines13050536 - 17 May 2025
Viewed by 1634
Abstract
Background/Objectives: Malaria, caused by infection with Plasmodium parasites, exacts a heavy toll worldwide. There are two licensed vaccines for malaria as well as two monoclonal antibodies that have shown promising efficacy in field trials. The vaccines and monoclonal antibodies target the major [...] Read more.
Background/Objectives: Malaria, caused by infection with Plasmodium parasites, exacts a heavy toll worldwide. There are two licensed vaccines for malaria as well as two monoclonal antibodies that have shown promising efficacy in field trials. The vaccines and monoclonal antibodies target the major surface protein (circumsporozoite protein, CSP) of Plasmodium falciparum. Yet P. falciparum is only one of the four major species of Plasmodium that infect humans. Plasmodium vivax is the second leading cause of malaria, but the P. vivax vaccine and monoclonal development lags far behind that for P. falciparum owing to the lack of basic preclinical tools such as in vitro culture or mouse models that replicate the key biological features of P. vivax. Notably among these features is the ability to form dormant liver stages (hypnozoites) that reactivate and drive the majority of the P. vivax malaria burden. Plasmodium cynomolgi is a simian parasite which is genotypically very close and phenotypically similar to P. vivax; it can infect non-human primates commonly used in research and replicates many features of P. vivax, including relapsing hypnozoites. Methods: Recently, a strain of P. cynomolgi has been adapted to in vitro cultures allowing parasite transgenesis. Here, we created a transgenic P. cynomolgi parasite in which the endogenous P. cynomolgi CSP has been replaced with P. vivax CSP, with the goal of enabling the preclinical study of anti-P. vivax CSP interventions to protect against primary and relapse infections. Results: We show that the in vitro-generated transgenic Pcy[PvCSP] parasite expresses both serotypes of P. vivax CSP and retains full functionality in vivo, including the ability to transmit to laboratory-reared Anopheles mosquitoes and cause relapsing infections in rhesus macaques. To our knowledge, this is the first gene replacement in a relapsing Plasmodium species. Conclusions: This work can directly enable the in vivo development of anti-P. vivax CSP interventions and provide a blueprint for the study of relapsing malaria through reverse genetics. Full article
(This article belongs to the Special Issue Recent Advances in Malaria Vaccine Development)
Show Figures

Figure 1

13 pages, 1160 KB  
Review
Plasmodium cynomolgi: What Should We Know?
by Fauzi Muh, Ariesta Erwina, Fadhila Fitriana, Jadidan Hada Syahada, Angga Dwi Cahya, Seongjun Choe, Hojong Jun, Triwibowo Ambar Garjito, Josephine Elizabeth Siregar and Jin-Hee Han
Microorganisms 2024, 12(8), 1607; https://doi.org/10.3390/microorganisms12081607 - 7 Aug 2024
Cited by 2 | Viewed by 8010
Abstract
Even though malaria has markedly reduced its global burden, it remains a serious threat to people living in or visiting malaria-endemic areas. The six Plasmodium species (Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale curtisi, Plasmodium ovale wallikeri [...] Read more.
Even though malaria has markedly reduced its global burden, it remains a serious threat to people living in or visiting malaria-endemic areas. The six Plasmodium species (Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale curtisi, Plasmodium ovale wallikeri and Plasmodium knowlesi) are known to associate with human malaria by the Anopheles mosquito. Highlighting the dynamic nature of malaria transmission, the simian malaria parasite Plasmodium cynomolgi has recently been transferred to humans. The first human natural infection case of P. cynomolgi was confirmed in 2011, and the number of cases is gradually increasing. It is assumed that it was probably misdiagnosed as P. vivax in the past due to its similar morphological features and genome sequences. Comprehensive perspectives that encompass the relationships within the natural environment, including parasites, vectors, humans, and reservoir hosts (macaques), are required to understand this zoonotic malaria and prevent potential unknown risks to human health. Full article
Show Figures

Figure 1

15 pages, 808 KB  
Review
Transfection Models to Investigate Plasmodium vivax-Type Dormant Liver Stage Parasites
by Annemarie Voorberg-van der Wel, Anne-Marie Zeeman and Clemens H. M. Kocken
Pathogens 2023, 12(9), 1070; https://doi.org/10.3390/pathogens12091070 - 22 Aug 2023
Cited by 5 | Viewed by 2702
Abstract
Plasmodium vivax causes the second highest number of malaria morbidity and mortality cases in humans. Several biological traits of this parasite species, including the formation of dormant stages (hypnozoites) that persist inside the liver for prolonged periods of time, present an obstacle for [...] Read more.
Plasmodium vivax causes the second highest number of malaria morbidity and mortality cases in humans. Several biological traits of this parasite species, including the formation of dormant stages (hypnozoites) that persist inside the liver for prolonged periods of time, present an obstacle for intervention measures and create a barrier for the elimination of malaria. Research into the biology of hypnozoites requires efficient systems for parasite transmission, liver stage cultivation and genetic modification. However, P. vivax research is hampered by the lack of an in vitro blood stage culture system, rendering it reliant on in vivo-derived, mainly patient, material for transmission and liver stage culture. This has also resulted in limited capability for genetic modification, creating a bottleneck in investigations into the mechanisms underlying the persistence of the parasite inside the liver. This bottleneck can be overcome through optimal use of the closely related and experimentally more amenable nonhuman primate (NHP) parasite, Plasmodium cynomolgi, as a model system. In this review, we discuss the genetic modification tools and liver stage cultivation platforms available for studying P. vivax persistent stages and highlight how their combined use may advance our understanding of hypnozoite biology. Full article
(This article belongs to the Special Issue Mechanisms Contributing to Persistence in Protozoan Parasites)
Show Figures

Figure 1

22 pages, 18705 KB  
Review
Zoonotic Malaria: Non-Laverania Plasmodium Biology and Invasion Mechanisms
by Jing-Wen Hang, Farhana Tukijan, Erica-Qian-Hui Lee, Shifana Raja Abdeen, Yaw Aniweh and Benoit Malleret
Pathogens 2021, 10(7), 889; https://doi.org/10.3390/pathogens10070889 - 13 Jul 2021
Cited by 18 | Viewed by 21521
Abstract
Malaria, which is caused by Plasmodium parasites through Anopheles mosquito transmission, remains one of the most life-threatening diseases affecting hundreds of millions of people worldwide every year. Plasmodium vivax, which accounts for the majority of cases of recurring malaria caused by the [...] Read more.
Malaria, which is caused by Plasmodium parasites through Anopheles mosquito transmission, remains one of the most life-threatening diseases affecting hundreds of millions of people worldwide every year. Plasmodium vivax, which accounts for the majority of cases of recurring malaria caused by the Plasmodium (non-Laverania) subgenus, is an ancient and continuing zoonosis originating from monkey hosts probably outside Africa. The emergence of other zoonotic malarias (P. knowlesi, P. cynomolgi, and P. simium) further highlights the seriousness of the disease. The severity of this epidemic disease is dependent on many factors, including the parasite characteristics, host-parasite interactions, and the pathology of the infection. Successful infection depends on the ability of the parasite to invade the host; however, little is known about the parasite invasion biology and mechanisms. The lack of this information adds to the challenges to malaria control and elimination, hence enhancing the potential for continuation of this zoonosis. Here, we review the literature describing the characteristics, distribution, and genome details of the parasites, as well as host specificity, host-parasite interactions, and parasite pathology. This information will provide the basis of a greater understanding of the epidemiology and pathogenesis of malaria to support future development of strategies for the control and prevention of this zoonotic infection. Full article
(This article belongs to the Special Issue Advances in Human Pathogens Infections)
Show Figures

Figure 1

14 pages, 3243 KB  
Article
Evaluation of Chimpanzee Adenovirus and MVA Expressing TRAP and CSP from Plasmodium cynomolgi to Prevent Malaria Relapse in Nonhuman Primates
by Young Chan Kim, Barbara Dema, Roberto Rodriguez-Garcia, César López-Camacho, Fabiana M. S. Leoratti, Amar Lall, Edmond J. Remarque, Clemens H. M. Kocken and Arturo Reyes-Sandoval
Vaccines 2020, 8(3), 363; https://doi.org/10.3390/vaccines8030363 - 6 Jul 2020
Cited by 8 | Viewed by 3903
Abstract
Plasmodium vivax is the world’s most widely distributed human malaria parasite, with over 2.8 billion people at risk in Asia, the Americas, and Africa. The 80–90% new P. vivax malaria infections are due to relapses which suggest that a vaccine with high efficacy [...] Read more.
Plasmodium vivax is the world’s most widely distributed human malaria parasite, with over 2.8 billion people at risk in Asia, the Americas, and Africa. The 80–90% new P. vivax malaria infections are due to relapses which suggest that a vaccine with high efficacy against relapses by prevention of hypnozoite formation could lead to a significant reduction in the prevalence of P. vivax infections. Here, we describe the development of new recombinant ChAdOx1 and MVA vectors expressing P. cynomolgi Thrombospondin Related Adhesive Protein (PcTRAP) and the circumsporozoite protein (PcCSP). Both were shown to be immunogenic in mice prior to their assessment in rhesus macaques. We confirmed good vaccine-induced humoral and cellular responses after prime-boost vaccination in rhesus macaques prior to sporozoite challenge. Results indicate that there were no significant differences between mock-control and vaccinated animals after challenge, in terms of protective efficacy measured as the time taken to 1st patency, or as number of relapses. This suggests that under the conditions tested, the vaccination with PcTRAP and PcCSP using ChAdOx1 or MVA vaccine platforms do not protect against pre-erythrocytic malaria or relapses despite good immunogenicity induced by the viral-vectored vaccines. Full article
(This article belongs to the Section Vaccines Against Tropical and Other Infectious Diseases)
Show Figures

Figure 1

Back to TopTop