Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Orenburg goats

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2416 KiB  
Article
Examination of Runs of Homozygosity Distribution Patterns and Relevant Candidate Genes of Potential Economic Interest in Russian Goat Breeds Using Whole-Genome Sequencing
by Tatiana E. Deniskova, Arsen V. Dotsev, Olga A. Koshkina, Anastasia D. Solovieva, Nadezhda A. Churbakova, Sergey N. Petrov, Alexey N. Frolov, Stanislav A. Platonov, Alexandra S. Abdelmanova, Maxim A. Vladimirov, Elena A. Gladyr, Igor V. Gusev, Svyatoslav V. Lebedev, Darren K. Griffin, Michael N. Romanov and Natalia A. Zinovieva
Genes 2025, 16(6), 631; https://doi.org/10.3390/genes16060631 - 24 May 2025
Viewed by 579
Abstract
Background/Objectives: Whole-genome sequencing (WGS) data provide valuable information about the genetic architecture of local livestock but have not yet been applied to Russian native goats, in particular, the Orenburg and Karachay breeds. A preliminary search for selection signatures based on single nucleotide polymorphism [...] Read more.
Background/Objectives: Whole-genome sequencing (WGS) data provide valuable information about the genetic architecture of local livestock but have not yet been applied to Russian native goats, in particular, the Orenburg and Karachay breeds. A preliminary search for selection signatures based on single nucleotide polymorphism (SNP) genotype data in these breeds was not informative. Therefore, in this study, we aimed to address runs of homozygosity (ROHs) patterns and find the respective signatures of selection overlapping candidate genes in Orenburg and Karachay goats using the WGS approach. Methods: Paired-end libraries (150 bp reads) were constructed for each animal. Next-generation sequencing was performed using a NovaSeq 6000 sequencer (Illumina, Inc., San Diego, CA, USA), with ~20X genome coverage. ROHs were identified in sliding windows, and ROH segments shared by at least 50% of the samples were considered as ROH islands. Results: ROH islands were identified on chromosomes CHI3, CHI5, CHI7, CHI12, CHI13, and CHI15 in Karachay goats; and CHI3, CHI11, CHI12, CHI15, and CHI16 in Orenburg goats. Shared ROH islands were found on CHI12 (containing the PARP4 and MPHOSPH8 candidate genes) and on CHI15 (harboring STIM1 and RRM1). The Karachay breed had greater ROH length and higher ROH number compared to the Orenburg breed (134.13 Mb and 695 vs. 78.43 Mb and 438, respectively). The genomic inbreeding coefficient (FROH) varied from 0.032 in the Orenburg breed to 0.054 in the Karachay breed. Candidate genes associated with reproduction, milk production, immunity-related traits, embryogenesis, growth, and development were identified in ROH islands in the studied breeds. Conclusions: Here, we present the first attempt of elucidating the ROH landscape and signatures of selection in Russian local goat breeds using WGS analysis. Our findings will pave the way for further insights into the genetic mechanisms underlying adaption and economically important traits in native goats. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

17 pages, 5835 KiB  
Article
Genetic Diversity in the Orenburg Goat Breed Revealed by Single-Nucleotide Polymorphism (SNP) Analysis: Initial Steps in Saving a Threatened Population
by Tatiana E. Deniskova, Arsen V. Dotsev, Alexandra S. Abdelmanova, Sergey N. Petrov, Alexey N. Frolov, Stanislav A. Platonov, Elena A. Gladyr, Igor V. Gusev, Marina I. Selionova, Andrey N. Rodionov, Svyatoslav V. Lebedev, Darren K. Griffin, Michael N. Romanov and Natalia A. Zinovieva
Genes 2024, 15(11), 1375; https://doi.org/10.3390/genes15111375 - 25 Oct 2024
Cited by 3 | Viewed by 1464
Abstract
Background/Objectives: Orenburg goats are renowned for their soft down that acts as a substrate for warm clothing, particularly shawls that have an international reputation. As with many local livestock breeds, however, the Orenburg is presently at risk of extinction, an issue that [...] Read more.
Background/Objectives: Orenburg goats are renowned for their soft down that acts as a substrate for warm clothing, particularly shawls that have an international reputation. As with many local livestock breeds, however, the Orenburg is presently at risk of extinction, an issue that can be addressed by assessing population genetic diversity and, thereafter, encouraging as much outbreeding as possible. Using single-nucleotide polymorphism (SNP)-based data, therefore, we analyzed the genetic diversity and population structure of modern Orenburg goats using samples collected from an expedition to Orenburg Oblast in 2024. Methods: We applied the Goat SNP50 BeadChip (Illumina, San Diego, CA, USA) for the genotyping of Orenburg goats from modern and archived populations. SNP genotypes of three Orenburg populations sampled in 2017 and 2019, Altai Mountain, Altai White, and Soviet Mohair breeds, were added to the dataset. Results: Principal component analysis and network and admixture analyses demonstrated that the genetic background inherent to the archived group of Orenburg goats was maintained in all modern populations. Values of genetic diversity indicators in modern populations were compatible with those obtained in comparison groups. Runs of homozygosity (ROH) were found in all the Orenburg goat populations (with a mean ROH length of 72.6–108.9 Mb and mean ROH number of 28–36). Genomic inbreeding based on ROH was low in all the Orenburg populations (FROH = 0.03–0.045). Conclusions: We showed that the ancestral background is retained in present-day Orenburg goats sampled in 2024. We provide the genetic basis through which certain breeder animals may be selected and bred traditionally or ex situ through a conservation program of gamete preservation. Full article
(This article belongs to the Special Issue Advances in Cattle, Sheep, and Goats Molecular Genetics and Breeding)
Show Figures

Figure 1

13 pages, 1261 KiB  
Communication
Maternal Origins and Haplotype Diversity of Seven Russian Goat Populations Based on the D-loop Sequence Variability
by Tatiana Deniskova, Nekruz Bakoev, Arsen Dotsev, Marina Selionova and Natalia Zinovieva
Animals 2020, 10(9), 1603; https://doi.org/10.3390/ani10091603 - 9 Sep 2020
Cited by 9 | Viewed by 4128
Abstract
The territory of modern Russia lies on the crossroads of East and West and covers various geographical environments where diverse groups of local goats originated. In this work, we present the first study on the maternal origin of Russian local goats, including Altai [...] Read more.
The territory of modern Russia lies on the crossroads of East and West and covers various geographical environments where diverse groups of local goats originated. In this work, we present the first study on the maternal origin of Russian local goats, including Altai Mountain (n = 9), Dagestan Downy (n = 18), Dagestan Local (n = 12), Dagestan Milk (n = 15), Karachaev (n = 21), Orenburg (n = 10), and Soviet Mohair (n = 7) breeds, based on 715 bp D-loop mitochondrial DNA (mtDNA) sequences. Saanen goats (n = 5) were used for comparison. Our findings reveal a high haplotype (HD = 0.843–1.000) and nucleotide diversity (π = 0.0112–0.0261). A total of 59 haplotypes were determined in the Russian goat breeds, in which all differed from the haplotypes of the Saanen goats. The haplotypes identified in Altai Mountain, Orenburg, Soviet Mohair, and Saanen goats were breed specific. Most haplotypes (56 of 59) were clustered together with samples belonging to haplogroup A, which was in accordance with the global genetic pattern of maternal origin seen in most goats worldwide. The haplotypes that were grouped together with rare haplogroups D and G were found in the Altai Mountain breed and haplogroup C was detected in the Soviet Mohair breed. Thus, our findings revealed that local goats might have been brought to Russia via various migration routes. In addition, haplotype sharing was found in aboriginal goat populations from overlapping regions, which might be useful information for their official recognition status. Full article
(This article belongs to the Collection Genetic Diversity in Livestock and Companion Animals)
Show Figures

Figure 1

Back to TopTop