Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = North Atlantic krill

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3307 KiB  
Article
Influence of Turbidity on Foraging Behaviour in Three-Spined Sticklebacks (Gasterosteus aculeatus)
by Lasse Lange Jensen, Thomas Bjørn, Andreas Hein Korsgaard, Cino Pertoldi and Niels Madsen
Fishes 2023, 8(12), 609; https://doi.org/10.3390/fishes8120609 - 16 Dec 2023
Cited by 2 | Viewed by 2524
Abstract
Anthropogenic activities increase turbidity in coastal marine environments globally, and turbidity is particularly caused by eutrophication. Turbidity is a measurement of the scattering and absorption of light by suspended matter in water. An increase in turbidity influences visual predators and affects community structures [...] Read more.
Anthropogenic activities increase turbidity in coastal marine environments globally, and turbidity is particularly caused by eutrophication. Turbidity is a measurement of the scattering and absorption of light by suspended matter in water. An increase in turbidity influences visual predators and affects community structures and whole ecosystems. The three-spined stickleback (Gasterosteus aculeatus) is a widespread species in the northern hemispheric Pacific and Atlantic oceans. It is a visual predator and, therefore, a very well-suited species for studying the effects of increasing turbidity on foraging behaviour and activity. Sticklebacks used for this study were from an aquarium in the North Sea Oceanarium. They have been in the aquarium for around two months and were originally collected in a highly eutrophicated marine fjord system. They were individually placed in an observation aquarium, fed with krill, given 10 min to forage, and observed by video cameras. The video films were analysed to study stickleback predation behaviour. Experiments were repeated with four different turbidity treatments, ranging from a mean of 0.034 up to 10 NTU (nephelometric turbidity unit). Bentonite clay was used as a turbidity-increasing substance. A statistically significant difference in foraging behaviour and activity between the turbidity treatments was observed. The test subjects were found to lunge less for prey and had a higher feeding latency with increasing turbidity. Additionally, they were less active with increasing turbidity. The behavioural instability estimated as a variation in feeding latency increased with increasing turbidity but decreased at the highest turbidity value. Our study indicates an effect of turbidity-increasing events on the behaviour of the three-spined stickleback and potentially also other similar visual predators. Full article
Show Figures

Graphical abstract

14 pages, 3499 KiB  
Article
Spatial–Temporal Distribution of the Euphausiid Euphausia pacifica and Fish Schools in the Coastal Southwestern East Sea
by Hyungbeen Lee, Junghwa Choi, Yangjae Im, Wooseok Oh, Kangseok Hwang and Kyounghoon Lee
Water 2022, 14(2), 203; https://doi.org/10.3390/w14020203 - 11 Jan 2022
Cited by 4 | Viewed by 2544
Abstract
The spatial and temporal distribution of euphausiid krill Euphausia pacifica (Crustacea: Malacostraca) and of fish schools were observed along acoustic transects at the southwestern East Sea coastline of Korea. Two-frequency (38- and 120-kHz) acoustic backscatter data were examined from April to July 2010. [...] Read more.
The spatial and temporal distribution of euphausiid krill Euphausia pacifica (Crustacea: Malacostraca) and of fish schools were observed along acoustic transects at the southwestern East Sea coastline of Korea. Two-frequency (38- and 120-kHz) acoustic backscatter data were examined from April to July 2010. A decibel identification window (SV 120–38) and school detection algorithm identified Euphausia pacifica and fish schools in the acoustic backscatter, respectively. The E. pacifica was regularly observed in middle of southern waters, where phytoplankton was abundant during spring, and irregularly during summer, when phytoplankton was homogeneously distributed. Using the distorted-wave Born approximation model, the acoustic density we calculated of E. pacifica was higher in spring (April: 75.9 mg m−2, May: 85.3 mg m−2) than in summer (June: 71.4 mg m−2, July: 54.1 mg m−2). The fish schools observed by the acoustic data tended to significantly increase from spring to summer. Although major fish species, such as anchovies and herring, fed on copepods and euphausiids in the survey area, the temporal and spatial distribution of E. pacifica was weakly correlated with the distribution of the fish schools. These findings aid in our understanding of the temporal and spatial distribution dynamics of euphausiids and fish schools in the food web of the coastal southwestern East Sea. Full article
(This article belongs to the Special Issue Species Richness and Diversity of Aquatic Ecosystems)
Show Figures

Figure 1

Back to TopTop