Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Nemopilema nomurai nematocyst venom (NnNV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10611 KiB  
Article
Exploring the Efficacy of Hydroxybenzoic Acid Derivatives in Mitigating Jellyfish Toxin-Induced Skin Damage: Insights into Protective and Reparative Mechanisms
by Hao Geng, Rongfeng Li, Lichao Teng, Chunlin Yu, Wenjie Wang, Kun Gao, Aoyu Li, Song Liu, Ronge Xing, Huahua Yu and Pengcheng Li
Mar. Drugs 2024, 22(5), 205; https://doi.org/10.3390/md22050205 - 29 Apr 2024
Cited by 4 | Viewed by 2417
Abstract
The escalation of jellyfish stings has drawn attention to severe skin reactions, underscoring the necessity for novel treatments. This investigation assesses the potential of hydroxybenzoic acid derivatives, specifically protocatechuic acid (PCA) and gentisic acid (DHB), for alleviating Nemopilema nomurai Nematocyst Venom (NnNV)-induced injuries. [...] Read more.
The escalation of jellyfish stings has drawn attention to severe skin reactions, underscoring the necessity for novel treatments. This investigation assesses the potential of hydroxybenzoic acid derivatives, specifically protocatechuic acid (PCA) and gentisic acid (DHB), for alleviating Nemopilema nomurai Nematocyst Venom (NnNV)-induced injuries. By employing an in vivo mouse model, the study delves into the therapeutic efficacy of these compounds. Through a combination of ELISA and Western blot analyses, histological examinations, and molecular assays, the study scrutinizes the inflammatory response, assesses skin damage and repair mechanisms, and investigates the compounds’ ability to counteract venom effects. Our findings indicate that PCA and DHB significantly mitigate inflammation by modulating critical cytokines and pathways, altering collagen ratios through topical application, and enhancing VEGF and bFGF levels. Furthermore, both compounds demonstrate potential in neutralizing NnNV toxicity by inhibiting metalloproteinases and phospholipase-A2, showcasing the viability of small-molecule compounds in managing toxin-induced injuries. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Graphical abstract

14 pages, 3731 KiB  
Article
Topical Exposure to Nemopilema nomurai Venom Triggers Oedematogenic Effects: Enzymatic Contribution and Identification of Venom Metalloproteinase
by Yang Yue, Huahua Yu, Rongfeng Li and Pengcheng Li
Toxins 2021, 13(1), 44; https://doi.org/10.3390/toxins13010044 - 8 Jan 2021
Cited by 17 | Viewed by 3299
Abstract
Scyphozoan envenomation is featured as severe cutaneous damages due to the toxic effects of venom components released by the stinging nematocysts of a scyphozoan. However, the oedematogenic property and mechanism of scyphozoan venoms remain uninvestigated. Here, we present the oedematogenic properties of the [...] Read more.
Scyphozoan envenomation is featured as severe cutaneous damages due to the toxic effects of venom components released by the stinging nematocysts of a scyphozoan. However, the oedematogenic property and mechanism of scyphozoan venoms remain uninvestigated. Here, we present the oedematogenic properties of the nematocyst venom from Nemopilema nomurai (NnNV), a giant stinging scyphozoan in China, for the first time, using in vivo and in vitro models with class-specific inhibitors. NnNV was able to induce remarkable oedematogenic effects, including induction of significant oedema in the footpad and thigh of mouse, and increase in vascular permeability in the dorsal skin and kidney. Moreover, batimastat, a specific metalloproteinase inhibitor, could significantly reduce the Evan’s blue leakage in the damaged organs and attenuate paw oedema after 12 h, but exerted no influence on NnNV-induced thigh oedema. These observations suggested a considerable contribution of NnNV metalloproteinase-like components to the increased vasopermeability, and the participation was strongly suggested to be mediated by destroying the integrity of the vascular basement membrane. Moreover, partial isolation combined LC-MS/MS profiling led to identification of the protein species Nn65 with remarkable metalloproteinase activity. This study contributes to the understanding of the effector components underlying the cutaneous damages induced by scyphozoan stings. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

12 pages, 1462 KiB  
Article
Inhibitory Effect of Metalloproteinase Inhibitors on Skin Cell Inflammation Induced by Jellyfish Nemopilema nomurai Nematocyst Venom
by Aoyu Li, Huahua Yu, Rongfeng Li, Song Liu, Ronge Xing and Pengcheng Li
Toxins 2019, 11(3), 156; https://doi.org/10.3390/toxins11030156 - 10 Mar 2019
Cited by 25 | Viewed by 4606
Abstract
Jellyfish envenomations result in extensive dermatological symptoms, clinically named as jellyfish dermatitis, which can seriously affect the daily activities and physical health of people. Inflammatory response accompanies the whole process of jellyfish dermatitis and the complexity of jellyfish venom components makes it difficult [...] Read more.
Jellyfish envenomations result in extensive dermatological symptoms, clinically named as jellyfish dermatitis, which can seriously affect the daily activities and physical health of people. Inflammatory response accompanies the whole process of jellyfish dermatitis and the complexity of jellyfish venom components makes it difficult to treat jellyfish dermatitis symptoms effectively. Moreover, inhibiting inflammation is essential for the treatment of jellyfish stings and exploring the main components of jellyfish venom that cause inflammation is an urgent research area. In this study, the inhibitory effects of matrix metalloproteinase (MMP) inhibitors for venom-induced inflammation were explored at a cellular level. The expression of the three inflammatory factors, IL-6, TNF-α and MCP-1 in two skin cell lines, human keratinocyte cells (HaCaT) and human embryonic skin fibroblasts cells (CCC-ESF-1), at the cellular level, after treatment with the inhibitors of jellyfish Nemopilema nomurai (N. nomurai) nematocyst venom (NnNV-I), were determined. The results showed that inhibitors of MMP can significantly reduce the toxic effects of jellyfish Nemopilema nomurai nematocyst venom (NnNV) to skin cells. The expression levels of the three inflammatory factors IL-6, MCP-1, and TNF-α in the cells were also significantly decreased, indicating that MMPs in jellyfish venom are probably vital factors leading to jellyfish dermatitis. This study is beneficial in the prevention and treatment of jellyfish stings. Full article
(This article belongs to the Collection Toxicological Challenges of Aquatic Toxins)
Show Figures

Figure 1

Back to TopTop