Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Nam Co Basin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6509 KiB  
Article
Assessing Increased Glacier Ablation Sensitivity to Climate Warming Using Degree-Day Method in the West Nyainqentanglha Range, Qinghai–Tibet Plateau
by Shuhong Wang, Jintao Liu, Hamish D. Pritchard, Xiao Qiao, Jie Zhang, Xuhui Shen and Wenyan Qi
Sustainability 2025, 17(11), 5143; https://doi.org/10.3390/su17115143 - 3 Jun 2025
Viewed by 443
Abstract
Limited surface energy and mass flux data hinder the understanding of glacier retreat mechanisms on the Qinghai–Tibet Plateau (QTP). Glaciers in the west Nyainqentanglha Range (WNR) supply meltwater to the densely populated Lhasa River basin (LRB) and Nam Co, the QTP’s second-largest endorheic [...] Read more.
Limited surface energy and mass flux data hinder the understanding of glacier retreat mechanisms on the Qinghai–Tibet Plateau (QTP). Glaciers in the west Nyainqentanglha Range (WNR) supply meltwater to the densely populated Lhasa River basin (LRB) and Nam Co, the QTP’s second-largest endorheic lake. In this study, we used a glacier mass balance model based on the degree-day method (GMB-DDM) to understand the response of glacier changes to climate warming. The spatiotemporal variation in degree-day factors for ice (DDFice; plural form: DDFsice) was assessed to characterize the sensitivity of glacier melt to warming over 44 years in the WNR. Our results demonstrate that the GMB_DDM effectively captured the accelerated mass loss and regional heterogeneity of WNR glaciers from 2000 to 2020, particularly the intensified negative balance after 2014. Moreover, glacier ablation was more sensitive to warming in the WNR during 2000–2020 than 1976–2000, with DDFice increases of 21% ± 8% in the LRB and 31% ± 10% in the Nam Co basin (NCB). Increased precipitation during the ablation season and reduced glacier surface albedo can explain the increased sensitivity to warming during 2000–2020. These findings could support sustainable water resource management in the LRB, NCB, and the surrounding areas of the QTP. Full article
Show Figures

Graphical abstract

12 pages, 7951 KiB  
Communication
Tropospheric NO2 Column over Tibet Plateau According to Geostationary Environment Monitoring Spectrometer: Spatial, Seasonal, and Diurnal Variations
by Xue Zhang, Chunxiang Ye, Jhoon Kim, Hanlim Lee, Junsung Park, Yeonjin Jung, Hyunkee Hong, Weitao Fu, Xicheng Li, Yuyang Chen, Xingyi Wu, Yali Li, Juan Li, Peng Zhang, Zhuoxian Yan, Jiaming Zhang, Song Liu and Lei Zhu
Remote Sens. 2025, 17(10), 1690; https://doi.org/10.3390/rs17101690 - 12 May 2025
Viewed by 709
Abstract
Nitrogen oxides (NOx) are key precursors of tropospheric ozone and particulate matter. The sparse local observations make it challenging to understand NOx cycling across the Tibetan Plateau (TP), which plays a crucial role in regional and global atmospheric processes. Here, [...] Read more.
Nitrogen oxides (NOx) are key precursors of tropospheric ozone and particulate matter. The sparse local observations make it challenging to understand NOx cycling across the Tibetan Plateau (TP), which plays a crucial role in regional and global atmospheric processes. Here, we utilized Geostationary Environment Monitoring Spectrometer (GEMS) data to examine the tropospheric NO2 vertical column density (ΩNO2) spatiotemporal variability over TP, a pristine environment marked with natural sources. GEMS observations revealed that the ΩNO2 over TP is generally low compared with surrounding regions with significant surface emissions, such as India and the Sichuan basin. A spatial decreasing trend of ΩNO2 is observed from the south and center to the north over Tibet. Unlike the surrounding regions, the TP exhibits opposing seasonal patterns and a negative correlation between the surface NO2 and ΩNO2. In the Lhasa and Nam Co areas within Xizang, the highest ΩNO2 in spring contrasts with the lowest surface concentration. Diurnally, a midday increase in ΩNO2 in the warm season reflects some external sources affecting the remote area. Trajectory analysis suggests strong convection lifted air mass from India and Southeast Asia into the upper troposphere over the TP. These findings highlight the mixing interplay of nonlocal and local NOx sources in shaping NO2 variability in a high-altitude environment. Future research should explore these transport mechanisms and their implications for atmospheric chemistry and climate dynamics over the TP. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

23 pages, 6275 KiB  
Article
The Evolution and Drivers of Hydrochemistry in Nam Co Lake, the Third Largest Lake on the Tibetan Plateau, over the Last 20 Years
by Wenhao Ren, Yanyan Gao, Hui Qian, Wengang Qu, Xiaoxin Shi, Yaoming Ma, Zhongbo Su and Weiqiang Ma
Sustainability 2025, 17(5), 2180; https://doi.org/10.3390/su17052180 - 3 Mar 2025
Cited by 1 | Viewed by 760
Abstract
The Tibetan Plateau, a critical regulator of the global water cycle and climate system, represents a highly sensitive region to environmental changes, with significant implications for sustainable development. This study focuses on Nam Co Lake, the third largest lake on the Tibetan Plateau, [...] Read more.
The Tibetan Plateau, a critical regulator of the global water cycle and climate system, represents a highly sensitive region to environmental changes, with significant implications for sustainable development. This study focuses on Nam Co Lake, the third largest lake on the Tibetan Plateau, and investigates the hydrochemical evolution of the lake and the driving mechanisms in regard to the lake–river–groundwater system within the Nam Co Basin over the last 20 years. Our findings provide critical insights for sustainable water resource management in regard to fragile alpine lake ecosystems. The hydrochemical analyses revealed distinct temporal patterns in the total dissolved solids, showing an increasing trend during the 2000s, followed by a decrease in the 2010s. Piper diagrams demonstrated a gradual change in the anion composition from the Cl type to the HCO3 type over the study period. The ion ratio analyses identified rock weathering (particularly silicate, halite, sulfate, and carbonate weathering), ion exchange, and evaporation processes as primary controlling processes, with notable differences between water bodies: while all four weathering processes contributed to the lake’s water chemistry, only halite and carbonate weathering influenced river and groundwater compositions. The comparative analysis revealed more pronounced ion exchange processes in lake water than in river and groundwater systems. Climate change impacts were manifested through two primary mechanisms: (1) enhanced evaporation, leading to elevated ion concentrations and isotopic enrichment; and (2) temperature-related effects on the water chemistry through increased dilution from precipitation and glacial meltwater. Understanding these mechanisms is essential for developing adaptive strategies to maintain water security and ecosystem sustainability. The relationships established between climate drivers and hydrochemical responses provide a scientific basis for predicting future changes and informing sustainable management practices for inland lake systems across the Tibetan Plateau. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

18 pages, 4511 KiB  
Review
Satellite Detection of Surface Water Extent: A Review of Methodology
by Jiaxin Li, Ronghua Ma, Zhigang Cao, Kun Xue, Junfeng Xiong, Minqi Hu and Xuejiao Feng
Water 2022, 14(7), 1148; https://doi.org/10.3390/w14071148 - 2 Apr 2022
Cited by 75 | Viewed by 13709
Abstract
Water is an imperative part of the Earth and an essential resource in human life and production. Under the effects of climate change and human activities, the spatial and temporal distribution of water bodies has been changing, and the shortage of water resources [...] Read more.
Water is an imperative part of the Earth and an essential resource in human life and production. Under the effects of climate change and human activities, the spatial and temporal distribution of water bodies has been changing, and the shortage of water resources is becoming increasingly serious worldwide. Therefore, the monitoring of water bodies is indispensable. Remote sensing has the advantages of real time, wide coverage, and rich information and has become a brand-new technical means to quickly obtain water information. This study summarizes the current common methods of water extraction based on optical and radar images, including the threshold method, support vector machine, decision tree, object-oriented extraction, and deep learning, as well as the advantages and disadvantages of each method. These methods were applied to the Huai River Basin in China and Nam Co on the Qinghai-Tibet Plateau. The extraction results show that all the aforementioned approaches can obtain reliable results. Among them, the threshold segmentation method based on normalized difference water index is more robust than others. In the water extraction process, there are still many problems that restrict the accuracy of the results. In the future, researchers will continue to search for more automatic, extensive, and high-precision water extraction methods. Full article
(This article belongs to the Special Issue Application of Remote Sensing Technology to Water-Related Ecosystems)
Show Figures

Figure 1

20 pages, 4856 KiB  
Article
Changing Patterns of Lakes on The Southern Tibetan Plateau Based on Multi-Source Satellite Data
by Fangdi Sun, Ronghua Ma, Bin He, Xiaoli Zhao, Yuchao Zeng, Siyi Zhang and Shilin Tang
Remote Sens. 2020, 12(20), 3450; https://doi.org/10.3390/rs12203450 - 20 Oct 2020
Cited by 12 | Viewed by 3439
Abstract
More than 1100 lakes covering an area greater than 4500 km2 are located on the Tibetan Plateau, and these lakes are important regulators of several large and famous rivers in Asia. The determination of hydrological changes that have occurred in these lakes [...] Read more.
More than 1100 lakes covering an area greater than 4500 km2 are located on the Tibetan Plateau, and these lakes are important regulators of several large and famous rivers in Asia. The determination of hydrological changes that have occurred in these lakes can reflect climate change and supply scientific data to plateau environmental research. Data from high frequency (moderate-resolution imaging spectro-radiometer) MODIS images, altimetry, and the Hydroweb database collected during 2000–2015 were integrated in this study to delineate the detailed hydrological changes of 15 lakes in three basins—Inner Basin, Indus Basin, and Brahmaputra Basin—on the southern Tibetan Plateau. Seven of the 10 lakes in the Inner Basin presented increasing trends with various intensities, and the increasing rates in the area of four lakes (Nam Co, Selin Co, Zhari-namco, and Ngangze) were 1.62, 28.81, 2.27, and 3.70 km2/yr, respectively. The yearly increases in volume of the four lakes were 3.6, 9.44, 6, and 2.36 km3, respectively. A water balance equation was established for the four lakes based on lake volume changes to illustrate the contributions of precipitation, ground runoff, evaporation, and other factors. The results revealed that surface runoff was the major contributor to expansion, and lake surface evaporation was almost 2.76–3.86 times that of lake surface precipitation. The two lakes in Indus Basin, Rakshastal and Mapam Yumco, presented a slight retreat. As a representative of Brahmaputra Basin, Yamzho Yumco underwent a retreat of –3.49 km2/yr in area, –0.39 m/yr in level, and –0.19 km3/yr in volume. Decreasing precipitation, increasing evaporation, and the operation of a hydrological project were the main causes of its constant retreat. Full article
(This article belongs to the Special Issue Remote Sensing in Hydrology and Water Resources Management)
Show Figures

Graphical abstract

24 pages, 6048 KiB  
Article
Precipitation Dominates Long-Term Water Storage Changes in Nam Co Lake (Tibetan Plateau) Accompanied by Intensified Cryosphere Melts Revealed by a Basin-Wide Hydrological Modelling
by Xiaoyang Zhong, Lei Wang, Jing Zhou, Xiuping Li, Jia Qi, Lei Song and Yuanwei Wang
Remote Sens. 2020, 12(12), 1926; https://doi.org/10.3390/rs12121926 - 14 Jun 2020
Cited by 18 | Viewed by 3708
Abstract
Lakes on the Tibetan Plateau (TP) have changed dramatically as a result of climate change during recent decades. Studying the changes in long-term lake water storage (LWS) is of great importance for regional water security and ecosystems. Nam Co Lake is the second [...] Read more.
Lakes on the Tibetan Plateau (TP) have changed dramatically as a result of climate change during recent decades. Studying the changes in long-term lake water storage (LWS) is of great importance for regional water security and ecosystems. Nam Co Lake is the second largest lake in the central TP. To investigate the long-term changes in LWS, a distributed cryosphere-hydrology model (WEB-DHM) driven by multi-source data was evaluated and then applied to simulate hydrological processes across the whole Nam Co Lake basin from 1980 to 2016. Firstly, a comparison of runoff (lake inflow), land surface temperature, and snow depth between the model simulations and observations or remote sensing products showed that WEB-DHM could accurately simulate hydrological processes in the basin. Meanwhile, the simulated daily LWS was in good agreement with satellite-derived data during 2000–2016. Secondly, long-term simulations showed that LWS increased by 9.26 km3 during 1980–2016, reaching a maximum in 2010 that was 10.25 km3 greater than that in 1980. During this period, LWS firstly decreased (1980–1987), then increased (1988–2008), and decreased again (2009–2016). Thirdly, the contributions of precipitation runoff, melt-water runoff, lake surface precipitation, and lake evaporation to Nam Co LWS were 71%, 33%, 24%, and -28%, respectively. Snow and glacier melting have significantly intensified during recent decades (2.96 m3 s−1/decade on average), contributing a mean proportion of 22% of lake inflows. These findings are consistent with the significant increasing trends of annual precipitation and temperature in the lake basin (25 mm/decade and 0.4 K/decade, respectively). We conclude that long-term variations in Nam Co LWS during 1980–2016 were largely controlled by precipitation; however, the contribution of precipitation runoff to total lake inflow has decreased while the contribution from warming-induced snow and glacier melting has significantly increased. Full article
Show Figures

Graphical abstract

23 pages, 9410 KiB  
Article
Simulation and Analysis of the Water Balance of the Nam Co Lake Using SWAT Model
by Muhammad Adnan, Shichang Kang, Guoshuai Zhang, Muhammad Saifullah, Muhammad Naveed Anjum and Ayaz Fateh Ali
Water 2019, 11(7), 1383; https://doi.org/10.3390/w11071383 - 5 Jul 2019
Cited by 18 | Viewed by 6384
Abstract
Rapid change of alpine lakes in the Tibetan Plateau (TP) is a clear manifestation of regional-scale climate variability that can be investigated by quantifying the regional hydrological cycle. The degree-day model (DDM) coupled with the Soil and Water Assessment Tool (SWAT) model were [...] Read more.
Rapid change of alpine lakes in the Tibetan Plateau (TP) is a clear manifestation of regional-scale climate variability that can be investigated by quantifying the regional hydrological cycle. The degree-day model (DDM) coupled with the Soil and Water Assessment Tool (SWAT) model were used to quantify the water budget of the Nam Co Lake over the period of 2007 to 2013. Driven by local observed meteorological data, the coupled model was successfully validated with the observed lake levels (with R2 = 0.65, NSE = 0.61, and PBIAS = −2.26). Analysis of the water balance revealed that rapid enlargement of the Nam Co Lake was primarily associated with precipitation increase while glacier melt played its role as the potential secondary driver in lake expansion. However, temporal analysis of lake expansion displayed that supremacy of precipitation and glacier melt interchanged between the years. It was found that average annual relative contributions of the precipitation, including direct precipitation on the lake, and glacier melt to the lake were 57% (or 667 mm), and 43% (or 502 mm), respectively. Besides, it was observed that annual values of actual evapotranspiration (ET) from the lake, glaciated, and non-glaciated subbasins were 615 mm, 280 mm, and 234 mm respectively. The average annual glacier mass balance (GMB) of the Nam Co basin was −150.9 millimeter water equivalent (mm w.e.). The relatively high amount of glacier melt was a consequence of the substantial increase in annual temperature in the lake basin. This work is of importance for understanding the rapid water cycle in the TP under global warming. Moreover, this work will also be helpful in monitoring and sustaining the local ecosystem and infrastructure, which is under risk due to rapid lake expansion as a result of climate change in the TP. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

13 pages, 725 KiB  
Article
Temporal and Spatial Aspects of Snow Distribution in the Nam Co Basin on the Tibetan Plateau from MODIS Data
by Jan Kropacek, Chen Feng, Markus Alle, Shichang Kang and Volker Hochschild
Remote Sens. 2010, 2(12), 2700-2712; https://doi.org/10.3390/rs2122700 - 7 Dec 2010
Cited by 24 | Viewed by 8631
Abstract
Large areas of the Tibetan plateau are only covered by a sparse network of ground snow sampling stations, while the snow cover is highly heterogeneously distributed due to wind, topography etc. Nevertheless, the snow accumulation and spatial patterns play an important role [...] Read more.
Large areas of the Tibetan plateau are only covered by a sparse network of ground snow sampling stations, while the snow cover is highly heterogeneously distributed due to wind, topography etc. Nevertheless, the snow accumulation and spatial patterns play an important role in the hydrological cycle. It releases moisture during the dry spring period before the onset of the monsoon season. Widely used MODIS snow cover products have been available globally since 2002. The understanding of the temporal and spatial distribution of snow cover in a given region calls for a comprehensive data representation method. In this paper a method to visualize both spatial and temporal aspects of snow cover distribution from MODIS 8-day composite data is presented. It is based on RGB display of the snow cover data which is grouped according to season. The RGB syntheses of snow cover distribution (RSD) were generated for the Nam Co Basin in the central part of the Tibetan Plateau during the years of 2002–2009. An alternating pattern of monsoon and autumn snow cover was identified in the western part of the basin which corresponds to the biennial character of the variations of the Indian monsoon. Monsoon snow cover was found in RSD images for the years 2002, 2004 and 2008 whereas in years 2003 and 2009 the autumn snow cover is dominant. The eastern part of the basin does not follow this general pattern since it is affected by the so called “lake effect”, which is a snow fall induced by the passing of dry and cold westerlies over the lake surface during the winter months. The years 2002, 2006 and 2007 were identified as years with a particularly strong lake effect from the RSD images. Areas with permanent snow cover and areas that were snow free were both found to be relatively stable. Comparison of the lake effect at Nam Co with nearby Siling Co, where the lake effect is smaller or absent, suggests that the presence of an effective barrier on the opposite side of the lake is a prerequisite for the occurrence of the strong lake effect. Full article
Show Figures

Figure 1

Back to TopTop