Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Na2WO4/Mn/SiO2 catalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4443 KiB  
Review
Advances in Oxidative Coupling of Methane
by Jinlin Deng, Peili Chen, Shengpeng Xia, Min Zheng, Da Song, Yan Lin, Anqi Liu, Xiaobo Wang, Kun Zhao and Anqing Zheng
Atmosphere 2023, 14(10), 1538; https://doi.org/10.3390/atmos14101538 - 8 Oct 2023
Cited by 18 | Viewed by 4023
Abstract
C2+ hydrocarbons, especially C2+ olefins, as important basic chemical raw materials, mainly come from petroleum cracking. With the increasing scarcity of petroleum resources, the search for new olefins production routes has become the focus of research, and the production of olefins [...] Read more.
C2+ hydrocarbons, especially C2+ olefins, as important basic chemical raw materials, mainly come from petroleum cracking. With the increasing scarcity of petroleum resources, the search for new olefins production routes has become the focus of research, and the production of olefins by the oxidative coupling of methane (OCM) process has attracted extensive attention. The OCM route is an important alternative to the production of olefins from petroleum resources and is also an important direction for the development of efficient and clean utilization of natural gas. In this paper, the mechanism, catalysts, and other key factors for the production of olefins by methane oxidative coupling are reviewed. The mechanism of OCM, including the reaction pathway and the formation of intermediate products, is introduced. Then, commonly used catalysts, such as alkali metal/alkaline earth metal oxides, rare earth metal oxides, composite metal oxides with special structures, and classical catalysts Mn/Na2WO4/SiO2, and their mechanisms of action in the reaction are discussed. In addition, the application of chemical looping oxidative coupling of methane (CLOCM) in olefin production is also investigated, which is a promising alternative way due to the high selectivity of olefins and the low cost of catalysts owing to the excellent performance of the catalyst recycling. These studies will help to further understand the mechanism of OCM for olefin production and provide guidance and support for applications in related fields. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

12 pages, 1777 KiB  
Article
Probing Low-Temperature OCM Performance over a Dual-Domain Catalyst Bed
by Baoting Huang, Jin Wang, Dina Shpasser and Oz M. Gazit
Chemistry 2023, 5(2), 1101-1112; https://doi.org/10.3390/chemistry5020075 - 8 May 2023
Cited by 1 | Viewed by 2267
Abstract
The Mn-Na2WO4/SiO2 catalyst is regarded as the most promising catalyst for the oxidative coupling of methane (OCM). Despite its remarkable performance, the Mn-Na2WO4/SiO2 catalyst requires a high reaction temperature (>750 °C) to show [...] Read more.
The Mn-Na2WO4/SiO2 catalyst is regarded as the most promising catalyst for the oxidative coupling of methane (OCM). Despite its remarkable performance, the Mn-Na2WO4/SiO2 catalyst requires a high reaction temperature (>750 °C) to show significant activity, a temperature regime that simultaneously causes quick deactivation. In the current work, we show that the benefits of this catalyst can be leveraged even at lower reaction temperatures by a using a stacked catalyst bed, which includes also a small amount of 5% La2O3/MgO on-top- of the Mn-Na2WO4/SiO2 catalyst. The simple stacking of the two catalysts provides >7-fold higher activity and ~1.4-fold higher C2 yield at 705 °C compared to Mn-Na2WO4/SiO2 and La2O3/MgO, respectively. We specifically show that the enhanced OCM performance is associated with synergistic interactions between the two catalyst domains and study their origin. Full article
Show Figures

Graphical abstract

16 pages, 30953 KiB  
Article
Raw Biogas as Feedstock for the OCM Process
by Barbara Michorczyk, Jakub Sikora, Bogusława Kordon-Łapczyńska, Dorota Gaweł and Izabela Czekaj
Catalysts 2022, 12(1), 54; https://doi.org/10.3390/catal12010054 - 5 Jan 2022
Cited by 6 | Viewed by 2282
Abstract
The paper presents the research results obtained in the process of oxidative coupling of methane, in which unpurified biogas was used as the feedstock. Biogas obtained from two kinds of biomass materials, i.e., plant materials (potato and beet pulp, Corn-Cob-Mix—biogas 1) and animal [...] Read more.
The paper presents the research results obtained in the process of oxidative coupling of methane, in which unpurified biogas was used as the feedstock. Biogas obtained from two kinds of biomass materials, i.e., plant materials (potato and beet pulp, Corn-Cob-Mix—biogas 1) and animal waste (waste from fish filleting—biogas 2) was considered. The influence of temperature, the ratio of methane/oxygen and total flows of feedstock on the catalytic performance in oxidative coupling of methane process was investigated. Comparative tests were carried out using pure methane and a mixture of methane-carbon dioxide to simulate the composition of biogas 2. The process was carried out in the presence of an Mn-Na2WO4/SiO2 catalyst. Fresh and used catalysts were characterised by means of powder X-ray diffraction, X-ray photoelectron spectroscopy, and low-temperature nitrogen adsorption techniques. In oxidative coupling of methane, the type of raw material used as the source of methane has a small effect on methane conversion (the differences in methane conversion are below 3%), but a significant effect on the selectivity to C2. Depending on the type of raw material, the differences in selectivity to C2 reach as high as 9%. However, the Mn-Na2WO4/SiO2 catalyst operated steadily in the tested period of time at any feedstock composition. Moreover, it was found that CO2, which is the second main component of biogas in addition to methane, has an effect on catalytic performance. Comparative results of catalytic tests indicate that the CO2 effect varies with temperature. Below 1073 K, CO2 exerts a small poisoning effect on methane conversion, while above this temperature the negative effect of CO2 disappears. In the case of selectivity to C2+, the negative effect of CO2 was observed only at 1023 K. At higher temperatures, CO2 enhances selectivity to C2+. The effect of CO2 was established by correlating the catalytic results with the temperature programmed desorption of CO2 investigation. The poisoning effect of CO2 was connected with the formation of surface Na2CO3, whose concentration depends on temperature. Full article
(This article belongs to the Special Issue Catalysts in Biomass Valorization)
Show Figures

Figure 1

17 pages, 8243 KiB  
Article
Na2WO4/Mn/SiO2 Catalyst Pellets for Upgrading H2S-Containing Biogas via the Oxidative Coupling of Methane
by Sangseo Gu, Jae-Wook Choi, Dong Jin Suh, Chun-Jae Yoo, Jungkyu Choi and Jeong-Myeong Ha
Catalysts 2021, 11(11), 1301; https://doi.org/10.3390/catal11111301 - 28 Oct 2021
Cited by 1 | Viewed by 2489
Abstract
Biogas is a promising renewable energy source; however, it needs to be upgraded to increase its low calorific value. In this study, oxidative coupling of methane (OCM) was selected to convert it to a higher fuel standard. Prior to establishing the scaled-up OCM [...] Read more.
Biogas is a promising renewable energy source; however, it needs to be upgraded to increase its low calorific value. In this study, oxidative coupling of methane (OCM) was selected to convert it to a higher fuel standard. Prior to establishing the scaled-up OCM process, the effect of organic/inorganic binders on catalytic activity was examined. The selection of the binders and composition of the catalyst pellet influenced the pore structure, fracture strength, and catalytic activity of the catalyst pellets. It was also observed that the O2 supply from the inorganic binder is a key factor in determining catalytic activity, based on which the composition of the catalyst pellets was optimized. The higher heating value increased from 39.9 (CH4, Wobbe index = 53.5 MJ/Nm3) to 41.0 MJ/Nm3 (OCM product mixture, Wobbe index = 54.2 MJ/Nm3), achieving the fuel standard prescribed in many countries (Wobbe index = 45.5–55.0 MJ/Nm3). The reaction parameters (temperature, gas hourly space velocity, size of the reaction system, and the CH4/O2 ratio) were also optimized, followed by a sensitivity analysis. Furthermore, the catalyst was stable for a long-term (100 h) operation under the optimized conditions. Full article
Show Figures

Graphical abstract

24 pages, 3856 KiB  
Article
Experimental Investigation of the Oxidative Coupling of Methane in a Porous Membrane Reactor: Relevance of Back-Permeation
by Aitor Cruellas, Wout Ververs, Martin van Sint Annaland and Fausto Gallucci
Membranes 2020, 10(7), 152; https://doi.org/10.3390/membranes10070152 - 14 Jul 2020
Cited by 8 | Viewed by 3254
Abstract
Novel reactor configurations for the oxidative coupling of methane (OCM), and in particular membrane reactors, contribute toward reaching the yield required to make the process competitive at the industrial scale. Therefore, in this work, the conventional OCM packed bed reactor using a Mn-Na [...] Read more.
Novel reactor configurations for the oxidative coupling of methane (OCM), and in particular membrane reactors, contribute toward reaching the yield required to make the process competitive at the industrial scale. Therefore, in this work, the conventional OCM packed bed reactor using a Mn-Na2WO4/SiO2 catalyst was experimentally compared with a membrane reactor, in which a symmetric MgO porous membrane was integrated. The beneficial effects of distributive feeding of oxygen along the membrane, which is the main advantage of the porous membrane reactor, were demonstrated, although no significant differences in terms of performance were observed because of the adverse effects of back-permeation prevailing in the experiments. A sensitivity analysis carried out on the effective diffusion coefficient also indicated the necessity of properly tuning the membrane properties to achieve the expected promising results, highlighting how this tuning could be addressed. Full article
Show Figures

Figure 1

11 pages, 4631 KiB  
Article
Oxidative Coupling of Methane over Mn2O3-Na2WO4/SiC Catalysts
by Jieun Kim, La-Hee Park, Jeong-Myeong Ha and Eun Duck Park
Catalysts 2019, 9(4), 363; https://doi.org/10.3390/catal9040363 - 15 Apr 2019
Cited by 18 | Viewed by 5748
Abstract
The oxidative coupling of methane (OCM) is operated at high temperatures and is a highly exothermic reaction; thus, hotspots form on the catalyst surface during reaction unless the produced heat is removed. It is crucial to control the heat formed because surface hotspots [...] Read more.
The oxidative coupling of methane (OCM) is operated at high temperatures and is a highly exothermic reaction; thus, hotspots form on the catalyst surface during reaction unless the produced heat is removed. It is crucial to control the heat formed because surface hotspots can degrade catalytic performance. Herein, we report the preparation of Mn2O3-Na2WO4/SiC catalysts using SiC, which has high thermal conductivity and good stability at high temperatures, and the catalyst was applied to the OCM. Two Mn2O3-Na2WO4/SiC catalysts were prepared by wet-impregnation on SiC supports having different particle sizes. For comparison, the Mn2O3-Na2WO4/SiO2 catalyst was also prepared by the same method. The catalysts were analyzed by nitrogen adsorption–desorption, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The transformation of SiC into α-cristobalite was observed for the Mn2O3-Na2WO4/SiC catalysts. Because SiC was completely converted into α-cristobalite for the nano-sized SiC-supported Mn2O3-Na2WO4 catalyst, the catalytic performance for the OCM reaction of Mn2O3-Na2WO4/n-SiC was similar to that of Mn2O3-Na2WO4/SiO2. However, only the surface layer of SiC was transformed into α-cristobalite for the micro-sized SiC (m-SiC) in Mn2O3-Na2WO4/m-SiC, resulting in a SiC@α-cristobalite core–shell structure. The Mn2O3-Na2WO4/m-SiC showed higher methane conversion and C2+ yield at 800 and 850 °C than Mn2O3-Na2WO4/SiO2. Full article
(This article belongs to the Special Issue Catalysts for Stable Molecules (CO2, CO, CH4, NH3) Conversion)
Show Figures

Graphical abstract

Back to TopTop