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Abstract: Biogas is a promising renewable energy source; however, it needs to be upgraded to
increase its low calorific value. In this study, oxidative coupling of methane (OCM) was selected
to convert it to a higher fuel standard. Prior to establishing the scaled-up OCM process, the effect
of organic/inorganic binders on catalytic activity was examined. The selection of the binders and
composition of the catalyst pellet influenced the pore structure, fracture strength, and catalytic activity
of the catalyst pellets. It was also observed that the O2 supply from the inorganic binder is a key factor
in determining catalytic activity, based on which the composition of the catalyst pellets was optimized.
The higher heating value increased from 39.9 (CH4, Wobbe index = 53.5 MJ/Nm3) to 41.0 MJ/Nm3

(OCM product mixture, Wobbe index = 54.2 MJ/Nm3), achieving the fuel standard prescribed in
many countries (Wobbe index = 45.5–55.0 MJ/Nm3). The reaction parameters (temperature, gas
hourly space velocity, size of the reaction system, and the CH4/O2 ratio) were also optimized,
followed by a sensitivity analysis. Furthermore, the catalyst was stable for a long-term (100 h)
operation under the optimized conditions.

Keywords: heterogeneous catalysts; biogas conversion; tube-shaped catalyst pellets; high sulfur-
compound resistance

1. Introduction

Biogas is a renewable energy source produced through the anaerobic digestion of
organic wastes, which can be used to produce heat and electricity [1–3]. Replacing fossil
fuels with sustainable biogas can reduce greenhouse gas emissions [4–6]; therefore, the
global demand for biogas is growing [7,8]. Biogas is a mixture of CH4, CO2, H2, H2S,
and other compounds, and its composition depends on feedstock and digestion condi-
tions [9,10]. Biologically produced CH4, a major component of biogas, has been purified
or upgraded to replace natural gas, i.e., cleaning (removing unwanted compounds) and
upgrading (increasing the heating value of biogas) have been attempted [2,11,12]. The mass
production of biogas is globally achieved typically for heat generation, and the valorization
of biogas into high-quality fuels and chemical feedstocks can also be performed to replace
the current fossil fuel-based conventional chemical industry.

Among the possible methods of upgrading, oxidative coupling of methane (OCM)
has been proposed to be promising for improving the heating value of biogas and produce
valuable chemical feedstocks [13–16]. The OCM converts CH4 to C2 or higher carbon num-
ber hydrocarbons (C2+ compounds), which have heating values two or three times higher
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than CH4 (Table S1), to meet global fuel standards (Wobbe index = 45.5–55.0 MJ/Nm3).
However, the OCM is highly exothermic (∆H = −87 kJ/mol at 800 ◦C) and requires an
O2 reactant, producing unwanted byproducts in excess, including CO and CO2 (COx).

For selectively producing paraffins and olefins via OCM, many catalysts have been
reported [17,18]. The Na2WO4/Mn/SiO2 (NWM) catalyst is particularly advantageous
because of its high activity and stability [19–27]. In addition to its application in upgrading
natural gas, the economically feasible upgrading of biogas via OCM using NWM has
been suggested [13–15], which exhibits high sulfur resistance and high stability for a long-
term OCM process using a simulated H2S-containing biogas reactant [16]. Based on the
feasibility of OCM for biogas observed at the lab scale, its possible scale-up to the industrial
scale has been investigated with a typical OCM using a methane reactant in our lab [28].

In an industrial process, the catalyst pellets in small, compressed, and hard chunk
forms are used for the efficient operation of large-scale processes. Mechanical rigidity is
a key parameter in a catalyst pellet because the abrasion of catalyst pellets results in a
significant pressure drop, and the resulting overheating of a reactor creates low efficiency
and a consequent plant shutdown [29].

In this study, OCM using NWM catalyst pellets to upgrade biogas was investigated to
(i) elucidate the effects of the catalyst pellets on OCM activity and (ii) optimize the reaction
conditions. Catalyst pellets containing NWM, one of the most stable and active OCM
catalysts, were used for biogas conversion [22]. The mechanically stable catalyst pellets
were prepared using an extrusion method. This manuscript will investigate whether the ge-
ometric (pore structure and mechanical strength) and electronic properties of the prepared
catalyst pellets are highly dependent on organic and inorganic binders, as illustrated in the
literature [30–32]. The composition and types of binders can be manipulated to achieve
optimal OCM activity [29,33]. Additionally, the organic binders induce the formation of
pore structures, whose removal by calcination creates spaces between the catalyst powder
particles and disperses the active sites on the catalyst pellets. However, the use of organic
binders may not influence catalytic activity if the pore structures collapse during high-
temperature calcination typically used for OCM catalysts [34–36]. Further, the addition
of inorganic binders can improve the mechanical strength of the pellets. The inorganic
binders of metals or metal oxides can also manipulate the electronic states of the active
components by supplying oxygen to the OCM catalyst systems [37–42]. The OCM using
catalyst pellets can also be controlled by reactor design and operating conditions [37,43,44]
because the catalysis results are highly dependent on the reaction conditions [44–47].
Finally, optimization of the gas hourly space velocity (GHSV), reaction temperature, reac-
tant flow rate, and CH4/O2 ratio was performed to determine the feasible operating range
for the desired OCM activity represented by C2+ selectivity, olefin selectivity, and C2+ yield.

2. Results and Discussion
2.1. Preparation of Catalyst Pellets and Their Physical Properties

The pore structures and mechanical strength of the catalyst pellets are important for
the reaction. This is because the pore structures can adjust the mass and heat transfer
in the catalyst bed to manipulate catalytic activity, while brittle pellets cannot be used
for industry-scale reaction processes; therefore, a high mechanical strength is required.
To prepare the catalyst pellets in this study, organic binders, including methyl cellulose
(MC or M), polyvinyl chloride (PVA or V), and starch, as well as inorganic binders, includ-
ing TiO2 P25 (P25 or P), Al2O3 (A), montmorillonite (Mont or Mo), MgO (Mg), and Mn2O3
(Mn), were mixed, and the physical properties of the prepared pellets were characterized
prior to the OCM reaction (fresh catalyst pellets). The nomenclature used to refer to the
catalyst pellets is described in Scheme 1. The effects of the organic binders, with P25 as the
inorganic binder, on the pore structures and mechanical properties of the catalyst pellets
were investigated by measuring their Brunauer–Emmett–Teller (BET) surface area and
fracture strength (Table 1). For the MC, PVA, and starch binders with an inorganic binder
P25, negligible BET surface areas (1–2 m2/g) were obtained, indicating the collapse of
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the pores during high-temperature calcination [34–36]. For pellets containing the organic
binder MC and different inorganic binders, BET surface areas of 1–8 m2/g were obtained.
Notably, the measured BET surface areas of the catalyst pellets in this study were not
significantly different from those of the catalyst powder (3 m2/g), indicating that the pore
formation in the pellets was not particularly significant during pelletization. The largest
BET surface area (8 m2/g) was observed for N(80)M(15)A(15), a pellet containing MC
(organic binder) and Al2O3 (inorganic binder); this was attributed to the high BET surface
area of Al2O3.

Catalysts 2021, 11, x FOR PEER REVIEW 3 of 19 
 

 

and fracture strength (Table 1). For the MC, PVA, and starch binders with an inorganic 
binder P25, negligible BET surface areas (1–2 m2/g) were obtained, indicating the collapse 
of the pores during high-temperature calcination [34–36]. For pellets containing the or-
ganic binder MC and different inorganic binders, BET surface areas of 1–8 m2/g were ob-
tained. Notably, the measured BET surface areas of the catalyst pellets in this study were 
not significantly different from those of the catalyst powder (3 m2/g), indicating that the 
pore formation in the pellets was not particularly significant during pelletization. The 
largest BET surface area (8 m2/g) was observed for N(80)M(15)A(15), a pellet containing 
MC (organic binder) and Al2O3 (inorganic binder); this was attributed to the high BET 
surface area of Al2O3. 

 
Scheme 1. Nomenclature of NWM pellets. 

Table 1. Physical properties of the catalyst pellets a. 

Catalyst Fracture Strength (MPa) BET Surface Area (m2/g) 
NWM (Powder)  n.a. 3 

Using organic binder of MC 
N(8)M(0.5) 1.45 2 

N(8)M(0.5)P(1.5) 2.79 2 
N(80)M(5)A(5) 0.54 8 

N(8)M(0.5)Mo(1.5) 0.19 2 
N(8)M(0.5)Mg(1.5) 0.42 2 
N(8)M(0.5)Mn(1.5) 0.40 1 

Using inorganic binder of P25 
N(8)M(0.5)P(1.5) 2.79 2 
N(8)V(0.5)P(1.5) 2.65 2 
N(8)S(0.5)P(1.5) 2.52 1 

a NWM or N: Na2WO4/Mn/SiO2, M: MC, or methyl cellulose; P: TiO2 P25 or P25; A: Al2O3; Mo: 
montmorillonite or Mont; Mg: MgO; Mn: Mn2O3; P: PVA; S: starch. 

When inorganic binder P25 was mixed with organic binders MC, PVA, and starch, a 
minimal change in the fracture strength of the catalyst pellets was observed (2.52–2.79 
MPa), as compared to that of N80M5P15 (2.79 MPa). However, adding other inorganic bind-
ers (Mont, Mn2O3, MgO, and Al2O3) with organic binder MC significantly reduced the 
fracture strength (0.19–1.45 MPa). These observations indicate that the inorganic binder is 
the highest contributing factor toward the fracture strength of the pellets, and P25 is the 
optimum inorganic binder to produce pellets with the highest mechanical stability. Ob-
servations of the BET surface area and fracture strength also suggest that the organic bind-
ers help pelletize the powder particles, but do not significantly impact the physical prop-
erties upon removal during calcination. 

Scanning electron microscopy (SEM) images of the prepared pellets exhibited differ-
ent surface morphologies depending on the inorganic binder (Figure 1). In the absence of 

Scheme 1. Nomenclature of NWM pellets.

Table 1. Physical properties of the catalyst pellets a.

Catalyst Fracture Strength (MPa) BET Surface Area (m2/g)

NWM (Powder) n.a. 3

Using organic binder of MC
N(8)M(0.5) 1.45 2

N(8)M(0.5)P(1.5) 2.79 2
N(80)M(5)A(5) 0.54 8

N(8)M(0.5)Mo(1.5) 0.19 2
N(8)M(0.5)Mg(1.5) 0.42 2
N(8)M(0.5)Mn(1.5) 0.40 1

Using inorganic binder of P25
N(8)M(0.5)P(1.5) 2.79 2
N(8)V(0.5)P(1.5) 2.65 2
N(8)S(0.5)P(1.5) 2.52 1

a NWM or N: Na2WO4/Mn/SiO2, M: MC, or methyl cellulose; P: TiO2 P25 or P25; A: Al2O3; Mo: montmorillonite
or Mont; Mg: MgO; Mn: Mn2O3; P: PVA; S: starch.

When inorganic binder P25 was mixed with organic binders MC, PVA, and starch, a
minimal change in the fracture strength of the catalyst pellets was observed (2.52–2.79 MPa),
as compared to that of N80M5P15 (2.79 MPa). However, adding other inorganic binders
(Mont, Mn2O3, MgO, and Al2O3) with organic binder MC significantly reduced the fracture
strength (0.19–1.45 MPa). These observations indicate that the inorganic binder is the high-
est contributing factor toward the fracture strength of the pellets, and P25 is the optimum
inorganic binder to produce pellets with the highest mechanical stability. Observations
of the BET surface area and fracture strength also suggest that the organic binders help
pelletize the powder particles, but do not significantly impact the physical properties upon
removal during calcination.

Scanning electron microscopy (SEM) images of the prepared pellets exhibited different
surface morphologies depending on the inorganic binder (Figure 1). In the absence of
inorganic binder (N(8)M(0.5)), which contained only the NWM catalyst after the organic
binder was removed during calcination, the pellet formed large particles networked with
others. Adding inorganic binders P25, Mont, MgO, and Mn2O3 did not significantly change
surface morphology. However, adding Al2O3 led to the formation of small sub-micrometer
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particles on the surface, which may be small OCM-inert Al2O3 particles. Barring the
presence of small particles on the surface, the near-identical morphology of the pellets
suggests that the mass and heat transfer in the catalyst pellets may not be influenced by
the type of inorganic binder.
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Figure 1. SEM images of the catalyst pellets prepared using an organic binder MC and different inorganic binders.

Organic binder MC and inorganic binder P25 were selected based on the observed
physical properties of the catalyst pellets. Because the organic binder was used for ag-
glomerating the catalyst powder only, and not for manipulating the physical properties of
the pellets, optimization of the P25 fraction was performed (Table 2). The highest fracture
strength of the catalyst pellets was observed for 15 wt % P25 or N(8)M(0.5)P(1.5), while
N(8)P(1.5) prepared without the organic binders exhibited the lowest BET surface area.
A lower surface area may correlate with reduced catalytic activity and poor mass transport
(Table 2). However, because the pore structure collapses during calcination, adjusting the
amount of organic binder does not significantly change the BET surface area.

Table 2. Physical properties of catalyst pellets containing MC and P25.

Catalyst Fracture Strength (MPa) BET Surface Area (m2/g)

N(8)M(0.5) 1.45 2
M(8)M(0.5)P(0.75) 1.60 2
N(8)M(0.5)P(1.5) 2.79 2
N(8)M(0.5)P(3) 2.57 3
N(8)M(0.5)P(6) 2.23 3

N(8)P(1.5) 0.29 1
N(8)M(0.25)P(1.5) 1.72 2
N(8)M(0.5)P(1.5) 2.79 2
N(8)M(1)P(1.5) 0.43 2
N(8)M(2)P(1.5) 0.29 2
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2.2. Biogas Upgrading Using Catalyst Pellets

An OCM of the biogas-simulating mixture composed of CH4, O2, N2, CO2, and H2S
was performed using the prepared catalyst pellets (Tables 3 and S2). The OCM activity did
not significantly change depending on the type of organic binder (Table S3), and the effects
of the inorganic binders were the focus of this study. Compared to the NWM powder
catalyst, the catalyst pellet without an inorganic binder (N(8)M(0.5)) exhibited a lower
CH4 conversion (8.20% to 7.85%) and C2+ selectivity (63.5% to 51.0%). The absence of the
inorganic binders enables the channeling of the reactants through the void space between
the pellets. Further, the dehydrogenation of paraffins to olefins was also suppressed,
exhibiting lower olefin selectivity (28.5% to 21.0%).

Table 3. OCM results of simulated biogas at 800 ◦C using catalyst pellets with different inorganic binders a.

Catalyst
Methane

Conversion
(%)

C2+
Selectivity

(%) b

Olefin
Selectivity

(%) c

C2+ Yield
(%) b

Olefin/Paraffin
(mol/mol) d

O2
Conversion

(%)

HHV
(MJ/Nm3) e

NWM (Powder) 8.20 63.5 28.5 5.09 0.82 66.7 40.6
N(8)M(0.5) 7.85 51.0 21.0 3.99 0.70 65.4 40.4

N(8)M(0.5)P(1.5) 10.0 83.9 44.4 8.39 1.12 77.8 41.0
N(8)M(0.5)A(1.5) 3.43 49.0 16.7 1.68 0.52 59.2 40.1

N(8)M(0.5)Mo(1.5) 6.00 33.3 11.0 1.95 0.50 56.6 40.1
N(8)M(0.5)Mg(1.5) 7.76 28.9 10.5 2.19 0.58 65.9 40.2
N(8)M(0.5)Mn(1.5) 8.63 71.7 34.9 6.19 0.95 70.6 40.7

a Reaction conditions: GHSV = 10,000 h−1, 0.18 mL of catalyst, 800 ◦C, 30 mL/min of flow rate composed of CH4/O2/N2/CO2/H2S
= 16.1/2/1/10.7/0.1 (v/v/v/v/v). b C2+ indicates paraffins and olefins including ethane, ethylene, propane, propylene, and other
hydrocarbons with higher carbon numbers. c Olefin contains ethylene and propylene. d Paraffin contains ethane and propane. e 0 ◦C, 1 atm.

For the pellets containing organic binder MC and inorganic binders Al2O3, Mont, or
MgO, poor OCM activity was observed (low CH4 conversion, low C2+ selectivity, and low
C2+ yield). Furthermore, MgO alone exhibited a high C2+ selectivity (Table S4), whereas its
mixture with NWM did not. However, pellets with inorganic binders P25 (N(8)M(0.5)P(1.5))
and Mn2O3 (N(8)M(0.5)Mn(1.5)) exhibited higher OCM activity compared to the NWM
powder: CH4 conversion (7.85% to 10.0% and 8.63%, respectively) and C2+ selectivity (51.0%
to 83.9% and 71.7%, respectively); however, it is to be noted that the pellets contained less
NWM because of the inorganic binder fraction. The improved catalytic activity with the
addition of P25 and Mn2O3 can be attributed to the improved O2 supply [37–39].

From the above results, the catalyst pellets containing P25 exhibit the highest cat-
alytic activity. Thus, the effect of P25 content on OCM activity was studied (Table 4).
CH4 conversion, O2 conversion, and C2+ yield increased with increasing P25 fraction;
however, as stated above, increasing the P25 fraction decreases the fraction of OCM-active
NWM. N(55)M(4)P(41), with the largest fraction of P25 in this study, exhibited the highest
CH4 conversion (12.8%) and O2 conversion (95.5%). However, C2+ selectivity decreased
with the increasing P25 fraction, indicating that the conversion of methane to paraffins and
olefins decreased with decreasing fractions of OCM-active NWM. Dehydrogenation was
also favored, with an increasing fraction of P25. The highest C2+ selectivity (83.9%) and
highest olefin selectivity (44.4%) were achieved for N(8)M(0.5)P(1.5).

In addition to the inorganic binders, the effect of varying the organic binder content
on OCM activity was also determined. However, this was less significant with adjusting
the MC-to-NWM ratio to 0–2/8 (w/w), exhibiting 10.0–11.5% CH4 conversion, 73.1–83.9%
C2+ selectivity, and 7.81–8.66% C2+ yield (Table 4). Notably, N(8)M(0.5)P(1.5) exhibited the
highest C2+ selectivity (83.9%) and olefin selectivity (44.4%). However, in the absence of
organic binder MC(N(8)P(1.5)), a lower CH4 conversion (5.72%) and a lower C2+ selectivity
(67.7%) were observed, indicating that, despite its less significant manipulation of the
catalyst structure, an organic binder is required for improved inorganic binder-induced
OCM activity.
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Table 4. OCM results of simulated biogas at 800 ◦C using catalyst pellet depending on the composition of the inorganic and
organic binders a.

Catalyst
Methane

Conversion
(%)

C2+
Selectivity

(%) b

Olefin
Selectivity

(%) c

C2+
Yield (%) b

Olefin/Paraffin
(mol/mol) d

O2
Conversion

(%)

HHV
(MJ/Nm3) e

N(8)M(0.5) 7.85 51.0 21.0 3.99 0.70 65.4 40.4
M(8)M(0.5)P(0.75) 9.51 81.5 42.6 7.75 1.10 79.2 40.9
N(8)M(0.5)P(1.5) 10.0 83.9 44.4 8.39 1.12 77.8 41.0
N(8)M(0.5)P(3) 11.5 77.2 41.9 8.80 1.18 85.4 41.1
N(8)M(0.5)P(6) 12.8 73.6 40.6 9.36 1.23 95.5 41.2

N(8)P(1.5) 5.72 67.7 29.0 3.83 0.75 65.7 40.4
N(8)M(0.25)P(1.5) 10.3 80.3 42.4 8.26 1.12 86.8 41.0
N(8)M(0.5)P(1.5) 10.0 83.9 44.4 8.39 1.12 77.8 41.0
N(8)M(1)P(1.5) 11.5 75.2 40.7 8.66 1.18 78.2 41.1
N(8)M(2)P(1.5) 10.7 73.1 38.2 7.81 1.09 74.3 41.0

a Reaction conditions: GHSV = 10,000 h−1, 0.18 mL of catalyst, 800 ◦C, 30 mL/min of flow rate composed of CH4/O2/N2/CO2/H2S
= 16.1/2/1/10.7/0.1 (v/v/v/v/v). b C2+ indicates paraffins and olefins including ethane, ethylene, propane, propylene, and other
hydrocarbons with higher carbon numbers. c Olefin contains ethylene and propylene. d Paraffin contains ethane and propane. e 0 ◦C, 1 atm.

2.3. Catalyst Characterization
2.3.1. O2 Temperature-Programmed Desorption (O2 TPD)

O2 TPD of a fresh (as-prepared) catalyst pellet was performed to elucidate the role of
the inorganic binders in supplying O2 to the reaction system (Figure 2). Among the pellets
containing inorganic binders, N(8)M(0.5)P(1.5) and N(8)M(0.5)Mn(1.5), which exhibited
good OCM activity, exhibited strong O2 desorption peaks at 750 ◦C and above. Compared
to the pellets without inorganic binders (N(8)M(0.5)), the O2 desorption peaks of those
containing P25 and Mn2O3 decreased (867 to 797 and 861 ◦C, respectively), indicating an
easier oxygen supply from these inorganic binders [37,40].
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with the P25 fraction (Figure S1). Increasing the fraction of P25 resulted in a higher
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desorption temperature with a lower desorption peak intensity, indicating a suppressed
oxygen supply. These observations indicate that the oxygen supply in the catalyst is
manipulated by the presence of inorganic binder P25. Smaller fractions of P25 improved
the oxygen supply, while an excess P25 suppressed it. An excess amount of P25 rapidly
oxidizes the reactant, which can overwhelm the NWM-catalyzed OCM activity. For the
catalyst pellet without organic binder MC (N(8)P(1.5)), the O2 desorption temperature
increased to 867 ◦C, which was higher than that of pellets containing organic binder
MC (Figure S1). These observations confirm that both organic and inorganic binders are
required for improved OCM activity of the catalyst pellets; the organic binder MC improves
the contact between inorganic binder P25 and the NWM catalyst.

2.3.2. Powder X-ray Diffraction (Powder XRD)

Fresh catalyst pellets, calcined at 800 ◦C, exhibited the crystal structures of α-cristobalite
(PDF#39-1425), Na2WO4 (PDF#12-0722), and Mn7SiO12 (PDF#41-1367) regardless of the
binder (Figure 3a). The type of organic binder did not induce any significant changes
in the crystalline structure of the pellet (Figure S2). However, the formation of quartz
(PDF #46-1045) was observed with the addition of the inorganic binders P25, Mont, MgO,
and Mn2O3, but not with Al2O3. Because the formation of cristobalite has been observed
in silica supports of the NWM catalyst [34], and quartz was not observed in the absence of
inorganic binders (N(8)M(0.5)), the presence of quartz can be attributed to the presence of
the non-silica inorganic binders. Interestingly, the catalyst pellets containing P25, exhibiting
the high diffraction peaks for quartz, achieved the highest OCM activity (Table 3), although
the formation of cristobalite has been suggested to improve the OCM activity [22]. The for-
mation of quartz was further investigated by calcining N(8)M(0.5)P(1.5) in air, N2, and 5%
H2/Ar (Figure S3). While quartz formed in the oxidizing (air) and inert (N2) environments,
the formation of cristobalite was observed in the reducing (5% H2/Ar) environment. These
observations indicate that the oxidation of TiO2 contributed to the formation of quartz.
The possible oxygen supply from TiO2 to the adjacent NWM may improve OCM activity,
although the formation of cristobalite is suppressed with inorganic binder P25.
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During the OCM reaction, the OCM-active Na2WO4 transformed into MnWO4
(PDF#13-0434) (Figure 3b) because of the redox cycle that supplies oxygen atoms to the
active WO4 [43]. Active WO4 as MnWO4 was present in fresh N(8)M(0.5)A(1.5) and
N(8)M(0.5)Mo(1.5), while fresh and spent N(8)M(0.5)Mg(1.5) exhibited the formation of
MgWO4 (PDF# 27-0789), which indicated a strong interaction between MgO and WO4,
leading to lower OCM activity. Further, MnTiO3 (PDF# 29-0902), which catalyzes O2 acti-
vation at a lower temperature [38], was observed in spent N(8)M(0.5)P(1.5). The formation
of MnTiO3 was also confirmed by the TEM-EDS results (Figure S4).

The change in the catalyst structure during the OCM reaction was further investi-
gated using high-temperature powder XRD measurements (Figure 4). With increasing
temperature, a new SiO2 phase, tridymite (PDF #42-1401), formed, and the peaks of cristo-
balite shifted to a lower 2θ because of its transition to β-cristobalite [48]. Quartz was still
observed at high temperatures. Furthermore, a distinct change in the crystal structures
of N(8)M(0.5)P(1.5) and N(8)M(0.5)Mn(1.5) with increasing temperature was observed.
At 850 ◦C, the MnWO4 peaks decreased and the Mn7SiO12 peaks increased.
Because MnWO4 was favored under reductive conditions (Figure S3) and the oxidation
state of Mn was higher in Mn7SiO12 (2+ and 3+) than in MnWO4 (2+), the catalysts were
oxidized at higher temperatures, while the redox cycle supplied oxygen to the active
WO4 [42]. The presence of isolated Mn and W, which do not form Mn-W oxides, suggests
the formation of highly dispersed Na-WO4 surface sites [27]. Therefore, the improved
OCM activity of the catalyst pellets containing inorganic binders is attributed to the facile
oxygen supply and the formation of new active sites (MnTiO3); however, quartz does not
promote OCM activity.
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The effect of P25 on the crystal structure of the catalyst pellets was also investigated
(Figure S5). Without binder (N(8)M(0.5)), the silica support exhibited α-cristobalite with
a low intensity peak of quartz. Adding P25 increased the peaks of quartz and rutile
TiO2, while those of Na2WO4, Mn7SiO12, and MnTiO3 decreased. On the other hand, the
type and amount of the organic binders did not significantly affect the crystal structure
(Figures S2 and S5). Quartz was observed as a major phase for SiO2, but MnTiO3 did not
form in the absence of the organic binder. Since the organic binder acts as a glue for the
inorganic binder and NWM, its absence limits their interaction, leading to the absence of
MnTiO3.

2.3.3. Electronic Structures

The electronic structures of the NWM catalyst pellets were observed by X-ray photo-
electron spectroscopy (XPS) (Figures 5 and S6–S10) [37–41]. The W 4f peaks of the fresh
calcined N(8)M(0.5)P(1.5) and N(8)M(0.5)Al(1.5) did not exhibit a significant shift in the
binding energy compared to that of the inorganic binder-free N(8)M(0.5), while those of
N(8)M(0.5)Mo(1.5), N(8)M(0.5)Mg(1.5), and N(8)M(0.5)Mn(1.5) exhibited lower binding
energies closer to that of WO4. After the OCM using H2S-containing biogas, the W 4f
peaks of N(8)M(0.5)P(1.5) and N(8)M(0.5)Al(1.5) did not significantly change, but those of
N(8)M(0.5)Mo(1.5), N(8)M(0.5)Mg(1.5), and N(8)M(0.5)Mn(1.5) shifted to a higher binding
energy. In particular, a significant shift in N(8)M(0.5)Mg(1.5) toward a higher binding
energy was observed. These observations indicate that inorganic binders Mont, MgO,
and Mn2O3 were significantly modified during the H2S-containing OCM, which altered
their influence on NWM. In contrast, the catalyst pellets without an inorganic binder
and those containing P25 and Al2O3 did not exhibit a significant shift in the W 4f peaks,
indicating fewer modifications in the catalyst pellets during the OCM. These observations
indicated that the W in the catalyst pellets was significantly affected by the H2S-containing
OCM and transformed into electron-poor W, degrading their OCM activity.
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The binding energy of W 4f7/2 was between 34.6–35.6 eV with different inorganic
binder while N(8)M(0.5) exhibited the binding energy of 34.7 eV. CH4 conversion exhibited
a weak relation with W 4f7/2 binding energy (Figure 6) because O2 supply from the
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inorganic binder modified the electronic structure of WO4 tetrahedon [39]. The dependence
demonstrates the oxidation activity of NWM catalyst can be modified by the O2 supply
from inorganic binder. N(8)M(0.5)Mg(1.5) was deviated from the trend because of the
strong interaction between MgO and WOx.
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Furthermore, significant changes in the XPS results were observed for Na 1s (Mont),
Si 2p (Mont, Mn2O3), and O 1s (Mont, Mn2O3) during the OCM of simulated biogas
(Figures S6–S10), which can be attributed to the degradation of the catalysts by the
sulfur species. Notably, the S 2p peaks were not clearly observed for the spent catalyst
pellets because of their low concentrations (Figure S10).

2.4. Reaction Condition Optimization

The reaction conditions were optimized for the best OCM activity to selectively
produce C2+ compounds (Figure 7) [37,44–47]. The effects of the GHSV, temperature,
flow rate, and CH4/O2 ratio on CH4 conversion, C2+ selectivity (and yield), olefin selectivity
(and yield), and olefin/paraffin ratio were investigated. While the CH4 conversion depicts
the activation of methane to form methyl radicals, the C2+ selectivity and the C2+ yield
depict the formation of methyl radicals rather than the deep oxidation to COx. The olefin
selectivity increases with improved formation of C2+ compounds and improved selective
dehydrogenation of paraffins to olefins. The highest CH4 and O2 conversions (~16.5%
and 100.0%, respectively) were observed at GHSV = 3333 h−1, which did not significantly
change at GHSV < 3333 h−1 (Figure 7a). The dehydrogenation of the paraffins to olefins
was improved with increasing space time (decreasing GHSV from 20,000 to 1000 h−1),
thereby increasing the olefin selectivity from 37.9% to 54.6%; however, the deep oxidation
to COx (CO and CO2) improved, decreasing C2+ selectivity.
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Figure 7. Oxidative coupling of methane results depending on (a) gas hourly space velocity (GHSV), (b) reaction
temperature, (c) flow rate, and (d) CH4/O2 ratio. Reaction conditions: (a) 800 ◦C, 30 mL/min of flow rate, and
CH4/O2/N2/CO2/H2S = 16.1/2/1/10.7/0.1 (v/v/v/v/v). (b) GHSV = 10,000 h−1, 0.18 mL of catalyst, 30 mL/min
of flow rate, and CH4/O2/N2/CO2/H2S = 16.1/2/1/10.7/0.1 (v/v/v/v/v). (c) GHSV = 10,000 h−1, 0.18 mL of catalyst,
800 ◦C, and CH4/O2/N2/CO2/H2S = 16.1/2/1/10.7/0.1 (v/v/v/v/v). (d) GHSV = 10,000 h−1, 0.18 mL of catalyst, 800 ◦C,
30 mL/min of flow rate, and (a mixture of CH4, CO2, H2S, and O2)/N2 = 29/1 (v/v).

The OCM activity of the catalyst pellets was significantly affected by the reaction
temperature (Figure 7b). As the temperature increased from 750 ◦C to 850 ◦C, the CH4
conversion and O2 conversion increased from 3.01% to 14.0% and 53.6% to 100.0%, respec-
tively. The olefin selectivity also increased from 22.7% (750 ◦C) to 56.7% (850 ◦C), while the
C2+ selectivity decreased from 86.7% (750 ◦C) to 81.6% (850 ◦C).

The scale-up of the reaction system was investigated by increasing the flow rate at a
fixed GHSV (Figure 7c). The CH4 and O2 conversions increased from 10.0% and 77.8% to
13.8% and 100.0%, respectively, as the flow rate increased from 30 to 150 mL/min. However,
the C2+ selectivity slightly decreased from 83.9% to 81.6%. The trends followed by the
effects of the scale-up and reaction temperature are similar, which may be attributed to the
formation of hot spots at higher amounts of the catalyst [28].
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The OCM activity of the catalyst pellets significantly varied as a result of decreasing
CH4/O2 ratio (Figure 7d and Table S6). A significant change in catalytic activity was
observed at CH4/O2 < 3.74 mol/mol. The CH4 and O2 conversions increased from 18.9%
and 88.4% to 41.6% and 96.6%, respectively, as the CH4/O2 decreased from 8.10 mol/mol
to 1.57 mol/mol; however, in the range of 3.74–8.10 mol/mol, the change was minimal.
Further, the C2+ selectivity decreased from 83.9% to 49.5% with the decreasing CH4/O2
ratio, especially from 3.74 mol/mol to 1.57 mol/mol. The olefin selectivity exhibited a
volcano-shaped curve, with the highest olefin selectivity (50.8%) at CH4/O2 = 3.74 mol/mol.
Although improved dehydrogenation can be expected with a greater amount of the O2
reactant, the observed lower olefin selectivity at the lower CH4/O2 ratio (or the larger
amount of O2) can be attributed to the gas-phase deep oxidation to COx.

Based on the results depicted in Figure 7, optimized reaction conditions were deter-
mined (Figure 8). Increasing the reaction temperature and decreasing the CH4/O2 ratio
increased the CH4 conversion but decreased C2+ selectivity. The C2+ yield, a product of
CH4 conversion and C2+ selectivity, also increased with increasing the reaction temperature
and decreasing the CH4/O2 ratio. This suggests that CH4 conversion is a more decisive
variable for the C2+ yield. The olefin selectivity exhibited a complex dependence on the
temperature and CH4/O2 ratio because the formation of olefins requires the production of
paraffins (C2+ yield). Based on the suggested facile process operation, the optimal reaction
conditions of 800 ◦C and CH4/O2 = 8.10 mol/mol were selected, and a long-term OCM of
simulated biogas was performed for 100 h. No significant catalyst deactivation (Figure 9)
or change in the catalyst pellets after 100 h of reaction were observed (Figure S11).
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N(8)M(0.5)P(1.5).

3. Experimental Section
3.1. Materials

All chemicals were used without further purification. MC (viscosity = 4000 cP),
Mont (K10, powder), titanium oxide (TiO2 P25, ≥99.5%), starch (soluble ACS reagent),
and poly(vinyl alcohol) (PVA, M.W. = 89,000–98,000, 99+% hydrolyzed) were purchased
from Sigma-Aldrich (Milwaukee, WI, USA). Aluminum oxide (Al2O3, γ-phase, 99.97%)
and magnesium oxide (MgO, 96%, heavy) were purchased from Alfa Aesar (Ward Hill,
Haverhill, MA, USA). Sodium tungstate dihydrate (Na2WO4·2H2O) was purchased from
Junsei Chemicals (Tokyo, Japan). Manganese nitrate hexahydrate (Mn(NO3)2·6H2O, 98%)
was purchased from Kanto Chemicals (Tokyo, Japan). Methane (CH4, 99.97%), a mixture of
methane, carbon dioxide, and hydrogen sulfide (CH4/CO2/H2S = 59.7/39.8/0.5 (v/v/v)),
oxygen (O2, 99.5%), helium (He, 99.999%), hydrogen (H2, 99.999%), ethane (C2H6, 99.5%),
and ethylene (C2H4, 99.99%) were purchased from Shinyang Air (Seoul, Korea). Deion-
ized (DI) water (18.2 MΩ·cm) was prepared using an aqua MAX-Ultra 370 series water
purification system (YL Instruments, Anyang, Korea).

3.2. Catalyst Preparation
3.2.1. Na2WO4/Mn/SiO2 (NWM) Catalyst

The Na2WO4 (5 wt %)/Mn (2 wt %)/SiO2 catalyst was prepared using the wetness
impregnation method. The silica support (100 g) was dispersed in DI water (300 mL) and
stirred for 30 min. Na2WO4·2H2O (6.014 g) and Mn(NO3)2·6H2O (6.42 mL) were added
to the mixture and stirred for 3 h. The solution was dried in air at 105 ◦C and calcined at
800 ◦C for 5 h.
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3.2.2. Catalyst Pellets

The catalyst pellets were prepared using an extrusion method. The catalyst powder
(8 g) was mixed with inorganic binders (0–6 g), organic binders (0–2 g), and DI water
(6–10 mL). The mixture was kneaded for 5–10 min, and the prepared paste was extruded
with a diameter of 2 mm. The extrudates were cut into 3–5 mm long pellets, which were
dried at 105 ◦C for 16 h and calcined at 800 ◦C for 6 h. Details of the pellet preparation
method are provided in Table S6.

3.3. Catalytic Activity Measurement

Catalytic activity was measured using a packed-bed quartz I-tube reactor with an
internal diameter of 6 mm and a 250 mm straight cylindrical tubing. A mid-scale reaction
was conducted using a reactor with an internal diameter of 1.54 cm. The catalyst bed was
placed between the quartz wool in the middle of the reactor. Zirconia–silica ceramic beads,
which are inert during OCM, filled the remainder of the reactor volume. The flow rates
were controlled using mass-flow controllers. The total flow rate was 30–150 mL/min. The
GHSV was controlled by increasing the amount of the catalyst from 1000 to 20,000 h−1.
Prior to the reaction, the catalyst was pretreated under N2 flow by heating to 700 ◦C at
a heating rate of 10 ◦C/min and maintained for 60 min. The reaction was performed at
700–850 ◦C. The temperature was maintained for 30 min prior to GC injection, followed
by ramping at 5 ◦C/min. The flow rates were controlled using mass-flow controllers. The
reaction mixture, including CH4, O2, CO, CO2, C2H2, C2H4, C2H6, C3H6, and C3H8, was
identified using a flame ionization detector (FID) and a thermal conductivity detector
(TCD). O2, CO, and CO2 were quantified using a TCD with a 60/80 Carboxen-1000 packed
column, and CH4, C2, and C3 hydrocarbons were analyzed using the FID with an Agilent
19091P-S15 column. N2 was used as the internal standard. Selectivity, conversion, and
yield were calculated based on the data collected after 30 min of reaction (Equations (1)–(3)).
The reaction was performed three times and averaged, which exhibited a deviation of
~3.7% CH4 conversion.

Conversion (%) = (consumed moles of methane)/(initial moles of methane) × 100 (1)

Selectivity of CxHyOz (%) = x × (produced moles of CxHyOz)/(consumed moles of methane) × 100 (2)

Yield of CxHyOz (%) = x × (produced moles of CxHyOz)/(initial moles of methane) × 100 (3)

3.4. Catalyst Characterization

N2 physisorption was performed using an ASAP 2020 device (Micromeritics, Nor-
cross, GA, USA). The fracture strength of the pellets was measured using an AFG-100N
digital force gauge (Mecmesin, Slinfold, England). The pellet was loaded between the
horizontally placed anvils with each end clamped. The magnitude of load where fracture
of the pellet occurred was recorded. The value was divided by the cross-sectional area of
pellet. Because the length of extruded pellets was not the same but ranged 3 to 5 mm, 20
catalyst pellets were measured, and the results were averaged. SEM images were collected
using an Inspect F field-emission scanning electron microscope (Thermo Fisher Scientific,
Waltham, MA, USA). O2 TPD was performed using a BELCAT-B catalyst analyzer (Mi-
crotracBEL, Osaka, Japan) equipped with a TCD and a mass spectrometer. Powder XRD
was performed using a Dmax2500-PC (RIGAKU, Tokyo, Japan) with Cu Kα1 radiation
(λ = 1.5406 Å, 40 kV, and 200 mA). All samples were crushed into powder form prior
to the XRD measurement. XRD data were collected using a quartz holder at 2θ = 5–90◦

with a step scan rate of 4◦/min. XPS was performed using a Theta Probe AR-XPS system
(Thermo Fisher Scientific, Waltham, MA, USA) with monochromated Al Kα excitation
(hν = 1486.6 eV) operated at 15 kV and 150 W at the Korea Basic Science Institute (Busan,
Korea). The measured binding energy was calibrated using the C 1s peak at 284.6 eV.
High-temperature powder XRD was conducted using an X’Pert PRO (Philips, Amsterdam,
Netherlands) with Cu Kα1 radiation (λ = 1.5406 Å, 60 kV, and 60 mA).
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3.5. Calculation of Higher Heat Values (HHV)

The higher heating value (HHV) of the product stream was calculated using the
molar fractions of the hydrocarbons and the corresponding HHV values in MJ/Nm3

under standard conditions for temperature and pressure (Table S7). The molar fractions
(xi) of the hydrocarbons were measured using the GC results. Only the hydrocarbon
mixtures without CO, CO2, O2, and other compounds were used to calculate the total HHV
(HHVtotal) (Equation (4)) [49].

HHVtotal = ΣxiHHVi (4)

4. Conclusions

The catalytic OCM reaction was observed in different reaction systems for develop-
ing scaled-up biogas upgrading processes. The HHV increased from 39.9 (CH4, Wobbe
index = 53.5 MJ/Nm3) to 41.0 MJ/Nm3 (OCM product mixture, Wobbe index = 54.2 MJ/Nm3),
achieving the fuel standard prescribed in many countries (Wobbe index = 45.5–55.0 MJ/Nm3).
The type and compositions of the organic/inorganic binders widely influenced the phys-
ical properties, such as morphology, specific surface area, and fracture strength, of the
catalyst pellets. The effect of the organic/inorganic binders on the catalytic activity was also
examined. The inorganic binder affected the catalytic activity or crystalline structure of the
pellets by supplying O2 to the active sites, while the organic binder affected the catalytic
activity of NWM by mediating the interaction between the catalyst and the inorganic
binder. The sensitivity of the reaction parameters (temperature, GHSV, total flow rate,
and CH4/O2 ratio) was also examined. The reaction conditions were optimized based
on the results of the sensitivity analysis. Furthermore, the stable OCM activity of NWM
was confirmed by the results of a long-term (100 h) operation. Because this study focused
on the preparation of catalyst pellets and the process condition optimization using these
pellets, we provided the preliminary knowledge to design the scaled-up biogas upgrading
process. Although the observed reaction results indicated that the scale up process did
not significantly adjust the catalytic activity, an experimental confirmation was required to
verify the optimized conditions of biogas upgrading processes. A better understanding of
scaled-up OCM processes of biogas upgrades may be achieved based on the findings in
this study because the process analyses in the literature are based on the OCM results of a
powder catalyst without the sulfur-containing compounds in the reaction feed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal11111301/s1, Table S1: Higher heating values of OCM products in STP conditions,
Table S2: Compositions of OCM products, Table S3: OCM results at 800 ◦C using catalyst pellets
depending on organic binders, Table S4: OCM results at 800 ◦C using inorganic binders, Table S5:
OCM results at 800 ◦C using catalyst pellets depending on inorganic binders with different feed
composition, Table S6: Preparation of catalyst pellets, Table S7: Higher heating values of products
at STP conditions, Figure S1: O2 TPD results of fresh catalyst pellets depending on the fractions
of (a) inorganic binder P25 and (b) organic binder MC, Figure S2: Powder XRD results of (a) fresh
and (b) spent catalyst pellets depending on organic binders, Figure S3: Powder XRD results of fresh
N(8)M(0.5)P(1.5) depending on the calcination environments of air, N2, and 5% H2/Ar, Figure S4:
TEM-EDS result of spent N(8)M(0.5)P(1.5), Figure S5: Powder XRD results of (a) fresh and (b) spent
catalyst pellets depending on the amount of inorganic binder P25, Figure S6: Na 1s XPS results of (a)
fresh and (b) spent catalyst pellets depending on inorganic binders, Figure S7: Mn 2p XPS results of
(a) fresh and (b) spent catalyst pellets depending on inorganic binders, Figure S8: Si 2p XPS results of
(a) fresh and (b) spent catalyst pellets depending on inorganic binders, Figure S9: O 1s XPS results of
(a) fresh and (b) spent catalyst pellets depending on inorganic binders, Figure S10: S 2p XPS results
of (a) fresh and (b) spent catalyst pellets depending on inorganic binders, Figure S11: Powder XRD
results of spent catalysts after 100 h reaction.
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