Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = NADSYN1 gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2625 KiB  
Article
Metabolic Alterations in NADSYN1-Deficient Cells
by Nils W. F. Meijer, Johan Gerrits, Susan Zwakenberg, Fried J. T. Zwartkruis, Nanda M. Verhoeven-Duif and Judith J. M. Jans
Metabolites 2023, 13(12), 1196; https://doi.org/10.3390/metabo13121196 - 12 Dec 2023
Cited by 3 | Viewed by 2255
Abstract
NAD synthetase 1 (encoded by the gene NADSYN1) is a cytosolic enzyme that catalyzes the final step in the biosynthesis of nicotinamide adenine dinucleotide (NAD+) from tryptophan and nicotinic acid. NADSYN1 deficiency has recently been added to the spectrum of congenital NAD+ deficiency [...] Read more.
NAD synthetase 1 (encoded by the gene NADSYN1) is a cytosolic enzyme that catalyzes the final step in the biosynthesis of nicotinamide adenine dinucleotide (NAD+) from tryptophan and nicotinic acid. NADSYN1 deficiency has recently been added to the spectrum of congenital NAD+ deficiency disorders. To gain insight into the metabolic consequences of NADSYN1 deficiency, the encoding gene was disrupted in A549 and HEK293T cells, and the metabolome was profiled in the presence of different NAD+ precursors, including tryptophan, nicotinamide and nicotinic acid. We demonstrate that when precursors of the NAD+ salvage pathway in the form of nicotinamide become limiting, NADSYN1 deficiency results in a decline in intracellular NAD+ levels even in the presence of other potential NAD+ sources such as tryptophan and nicotinic acid. As a consequence, alterations in 122 and 69 metabolites are observed in NADSYN1-deficient A549 and HEK293T cells compared to the wild-type cell line (FC > 2 and p < 0.05). We thus show that NADSYN1 deficiency results in a metabolic phenotype characterized by alterations in glycolysis, the TCA cycle, the pentose phosphate pathway, and the polyol pathway. Full article
(This article belongs to the Special Issue Diagnostic and Therapeutic Monitoring for Neurometabolic Disorders)
Show Figures

Figure 1

19 pages, 2234 KiB  
Article
Exploring the Genetic Causes for Postnatal Growth Failure in Children Born Non-Small for Gestational Age
by Yoo-Mi Kim, Han-Hyuk Lim, Eunhee Kim, Geena Kim, Minji Kim, Hyejin So, Byoung Kook Lee, Yoowon Kwon, Jeesu Min and Young Seok Lee
J. Clin. Med. 2023, 12(20), 6508; https://doi.org/10.3390/jcm12206508 - 13 Oct 2023
Cited by 3 | Viewed by 2240
Abstract
The most common causes of short stature (SS) in children are familial short stature (FSS) and idiopathic short stature (ISS). Recently, growth plate dysfunction has been recognized as the genetic cause of FSS or ISS. The aim of this study was to investigate [...] Read more.
The most common causes of short stature (SS) in children are familial short stature (FSS) and idiopathic short stature (ISS). Recently, growth plate dysfunction has been recognized as the genetic cause of FSS or ISS. The aim of this study was to investigate monogenic growth failure in patients with ISS and FSS. Targeted exome sequencing was performed in patients categorized as ISS or FSS and the subsequent response to growth hormone (GH) therapy was analyzed. We found 17 genetic causes involving 12 genes (NPR2, IHH, BBS1, COL1A1, COL2A1, TRPS1, MASP1, SPRED1, PTPTN11, ADNP, NADSYN1, and CERT1) and 2 copy number variants. A genetic cause was found in 45.5% and 35.7% of patients with FSS and ISS, respectively. The genetic yield in patients with syndromic and non-syndromic SS was 90% and 23.1%, respectively. In the 11 genetically confirmed patients, a gain in height from −2.6 to −1.3 standard deviations after 2 years of GH treatment was found. The overall diagnostic yield in this study was 41.7%. We identified several genetic causes involving paracrine signaling, the extracellular matrix, and basic intracellular processes. Identification of the causative gene may provide prognostic evidence for the use of GH therapy in non-SGA children. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

17 pages, 3245 KiB  
Article
Research Trends of Vitamin D Metabolism Gene Polymorphisms Based on a Bibliometric Investigation
by Mohamed Abouzid, Marta Karaźniewicz-Łada, Basel Abdelazeem and James Robert Brašić
Genes 2023, 14(1), 215; https://doi.org/10.3390/genes14010215 - 14 Jan 2023
Cited by 7 | Viewed by 4704
Abstract
Vitamin D requires activation to show its pharmacological effect. While most studies investigate the association between vitamin D and disease, only a few focus on the impact of vitamin D metabolism gene polymorphisms (vitDMGPs). This bibliometric study aims to provide an overview of [...] Read more.
Vitamin D requires activation to show its pharmacological effect. While most studies investigate the association between vitamin D and disease, only a few focus on the impact of vitamin D metabolism gene polymorphisms (vitDMGPs). This bibliometric study aims to provide an overview of current publications on vitDMGPs (CYP27B1, CYP24A1, CYP2R1, CYP27A1, CYP2R1, DHCR7/NADSYN1), compare them across countries, affiliations, and journals, and inspect keywords, co-citations, and citation bursts to identify trends in this research field. CiteSpace© (version 6.1.R3, Chaomei Chen), Bibliometrix© (R version 4.1.3 library, K-Synth Srl, University of Naples Federico II, Naples, Italy), VOSviewer© (version 1.6.1, Nees Jan van Eck and Ludo Waltman, Leiden University, Leiden, Netherlands) and Microsoft® Excel 365 (Microsoft, Redmond, Washington, USA) classified and summarized Web of Science articles from 1998 to November 2022. We analyzed 2496 articles and built a timeline of co-citations and a bibliometric keywords co-occurrence map. The annual growth rate of vitDMGPs publications was 18.68%, and their relative research interest and published papers were increasing. The United States of America leads vitDMGPs research. The University of California System attained the highest quality of vitDMGPs research, followed by the American National Institutes of Health and Harvard University. The three productive journals on vitDMGPs papers are J. Steroid. Biochem. Mol. Biol., PLOS ONE, and J. Clin. Endocrinol. Metab. We highlighted that the vitDMGPs domain is relatively new, and many novel research opportunities are available, especially those related to studying single nucleotide polymorphisms or markers in a specific gene in the vitamin D metabolism cycle and their association with disease. Genome-wide association studies, genetic variants of vitDMGPs, and vitamin D and its role in cancer risk were the most popular studies. CYP24A1 and CYB27A1 were the most-studied genes in vitDMGPs. Insulin was the longest-trending studied hormone associated with vitDMGPs. Trending topics in this field relate to bile acid metabolism, transcriptome and gene expression, biomarkers, single nucleotide polymorphism, and fibroblast growth factor 23. We also expect an increase in original research papers investigating the association between vitDMGPs and coronavirus disease 2019, hypercalcemia, Smith–Lemli–Opitz syndrome, 27-hydroxycholesterol, and mendelian randomization. These findings will provide the foundations for innovations in the diagnosis and treatment of a vast spectrum of conditions. Full article
(This article belongs to the Special Issue Bioinformatics and Machine Learning in Disease Research)
Show Figures

Graphical abstract

15 pages, 941 KiB  
Systematic Review
Vitamin D and Type 1 Diabetes Risk: A Systematic Review and Meta-Analysis of Genetic Evidence
by Liana Najjar, Joshua Sutherland, Ang Zhou and Elina Hyppönen
Nutrients 2021, 13(12), 4260; https://doi.org/10.3390/nu13124260 - 26 Nov 2021
Cited by 13 | Viewed by 5259
Abstract
Several observational studies have examined vitamin D pathway polymorphisms and their association with type 1 diabetes (T1D) susceptibility, with inconclusive results. We aimed to perform a systematic review and meta-analysis assessing associations between selected variants affecting 25-hydroxyvitamin D [25(OH)D] and T1D risk. We [...] Read more.
Several observational studies have examined vitamin D pathway polymorphisms and their association with type 1 diabetes (T1D) susceptibility, with inconclusive results. We aimed to perform a systematic review and meta-analysis assessing associations between selected variants affecting 25-hydroxyvitamin D [25(OH)D] and T1D risk. We conducted a systematic search of Medline, Embase, Web of Science and OpenGWAS updated in April 2021. The following keywords “vitamin D” and/or “single nucleotide polymorphisms (SNPs)” and “T1D” were selected to identify relevant articles. Seven SNPs (or their proxies) in six genes were analysed: CYP2R1 rs10741657, CYP2R1 (low frequency) rs117913124, DHCR7/NADSYN1 rs12785878, GC rs3755967, CYP24A1 rs17216707, AMDHD1 rs10745742 and SEC23A rs8018720. Seven case-control and three cohort studies were eligible for quantitative synthesis (n = 10). Meta-analysis results suggested no association with T1D (range of pooled ORs for all SNPs: 0.97–1.02; p > 0.01). Heterogeneity was found in DHCR7/NADSYN1 rs12785878 (I2: 64.8%, p = 0.02). Sensitivity analysis showed exclusion of any single study did not alter the overall pooled effect. No association with T1D was observed among a Caucasian subgroup. In conclusion, the evidence from the meta-analysis indicates a null association between selected variants affecting serum 25(OH)D concentrations and T1D. Full article
(This article belongs to the Special Issue Gene Polymorphism and Nutrition: Relationships with Chronic Disease)
Show Figures

Figure 1

11 pages, 264 KiB  
Article
Associations between Genetic Variants in the Vitamin D Metabolism Pathway and Severity of COVID-19 among UAE Residents
by Fatme Al-Anouti, Mira Mousa, Spyridon N. Karras, William B. Grant, Zainab Alhalwachi, Laila Abdel-Wareth, Maimunah Uddin, Nawal Alkaabi, Guan K. Tay, Bassam Mahboub and Habiba AlSafar
Nutrients 2021, 13(11), 3680; https://doi.org/10.3390/nu13113680 - 20 Oct 2021
Cited by 21 | Viewed by 6192
Abstract
Vitamin D has many effects on cells in the immune system. Many studies have linked low vitamin D status with severity of COVID-19. Genetic variants involved in vitamin D metabolism have been implicated as potential risk factors for severe COVID-19 outcomes. This study [...] Read more.
Vitamin D has many effects on cells in the immune system. Many studies have linked low vitamin D status with severity of COVID-19. Genetic variants involved in vitamin D metabolism have been implicated as potential risk factors for severe COVID-19 outcomes. This study investigated how genetic variations in humans affected the clinical presentation of COVID-19. In total, 646 patients with SARS-CoV-2 infection were divided into two groups: noncritical COVID-19 (n = 453; 70.12%) and a critical group (n = 193; 29.87%). Genotype data on the GC, NADSYN1, VDR, and CYP2R1 genes along with data on serum 25-hydroxyvitamin D levels were compiled in patients admitted to a major hospital in the United Arab Emirates between April 2020 and January 2021. We identified 12 single-nucleotide polymorphisms associated with the critical COVID-19 condition: rs59241277, rs113574864, rs182901986, rs60349934, and rs113876500; rs4944076, rs4944997, rs4944998, rs4944979, and rs10898210; and rs11574018 and rs11574024. We report significant associations between genetic determinants of vitamin D metabolism and COVID-19 severity in the UAE population. Further research needed to clarify the mechanism of action against viral infection in vitamin D deficiency. These variants could be used with vaccination to manage the spread of SARS-CoV-2 and could be particularly valuable in populations in which vitamin D deficiency is common. Full article
(This article belongs to the Section Nutrition and Public Health)
11 pages, 8550 KiB  
Article
Disruptive NADSYN1 Variants Implicated in Congenital Vertebral Malformations
by Jiachen Lin, Lina Zhao, Sen Zhao, Shengjie Li, Zhengye Zhao, Zefu Chen, Zhifa Zheng, Jiashen Shao, Yuchen Niu, Xiaoxin Li, Jianguo Terry Zhang, Zhihong Wu and Nan Wu
Genes 2021, 12(10), 1615; https://doi.org/10.3390/genes12101615 - 14 Oct 2021
Cited by 11 | Viewed by 6244
Abstract
Genetic perturbations in nicotinamide adenine dinucleotide de novo (NAD) synthesis pathway predispose individuals to congenital birth defects. The NADSYN1 encodes the final enzyme in the de novo NAD synthesis pathway and, therefore, plays an important role in NAD metabolism and organ embryogenesis. Biallelic [...] Read more.
Genetic perturbations in nicotinamide adenine dinucleotide de novo (NAD) synthesis pathway predispose individuals to congenital birth defects. The NADSYN1 encodes the final enzyme in the de novo NAD synthesis pathway and, therefore, plays an important role in NAD metabolism and organ embryogenesis. Biallelic mutations in the NADSYN1 gene have been reported to be causative of congenital organ defects known as VCRL syndrome (Vertebral-Cardiac-Renal-Limb syndrome). Here, we analyzed the genetic variants in NADSYN1 in an exome-sequenced cohort consisting of patients with congenital vertebral malformations (CVMs). A total number of eight variants in NADSYN1, including two truncating variants and six missense variants, were identified in nine unrelated patients. All enrolled patients presented multiple organ defects, with the involvement of either the heart, kidney, limbs, or liver, as well as intraspinal deformities. An in vitro assay using COS-7 cells demonstrated either significantly reduced protein levels or disrupted enzymatic activity of the identified variants. Our findings demonstrated that functional variants in NADSYN1 were involved in the complex genetic etiology of CVMs and provided further evidence for the causative NADSYN1 variants in congenital NAD Deficiency Disorder. Full article
(This article belongs to the Special Issue New Insights into Genetic Risk Assessment in Congenital Diseases)
Show Figures

Figure 1

13 pages, 2065 KiB  
Article
A Homozygous Deletion of Exon 5 of KYNU Resulting from a Maternal Chromosome 2 Isodisomy (UPD2) Causes Catel-Manzke-Syndrome/VCRL Syndrome
by Isabel Schüle, Urs Berger, Uta Matysiak, Gunda Ruzaike, Brigitte Stiller, Martin Pohl, Ute Spiekerkoetter, Ekkehart Lausch, Sarah C. Grünert and Miriam Schmidts
Genes 2021, 12(6), 879; https://doi.org/10.3390/genes12060879 - 7 Jun 2021
Cited by 80 | Viewed by 3960
Abstract
Vertebral, Cardiac, Renal and Limb Defect Syndrome (VCRL), is a very rare congenital malformation syndrome. Pathogenic variants in HAAO (3-Hydroxyanthranilate 3,4-dioxygenase), NADSYN1 (NAD+ Synthetase-1) and KYNU (Kynureninase) have been identified in a handful of affected individuals. All three genes encode for enzymes essential [...] Read more.
Vertebral, Cardiac, Renal and Limb Defect Syndrome (VCRL), is a very rare congenital malformation syndrome. Pathogenic variants in HAAO (3-Hydroxyanthranilate 3,4-dioxygenase), NADSYN1 (NAD+ Synthetase-1) and KYNU (Kynureninase) have been identified in a handful of affected individuals. All three genes encode for enzymes essential for the NAD+ de novo synthesis pathway. Using Trio-Exome analysis and CGH array analysis in combination with long range PCR, we have identified a novel homozygous copy number variant (CNV) encompassing exon 5 of KYNU in an individual presenting with overlapping features of VCRL and Catel–Manzke Syndrome. Interestingly, only the mother, not the father carried the small deletion in a heterozygous state. High-resolution SNP array analysis subsequently delineated a maternal isodisomy of chromosome 2 (UPD2). Increased xanthurenic acid excretion in the urine confirmed the genetic diagnosis. Our findings confirm the clinical, genetic and metabolic phenotype of VCRL1, adding a novel functionally tested disease allele. We also describe the first patient with NAD+ deficiency disorder resulting from a UPD. Furthermore, we provide a comprehensive review of the current literature covering the genetic basis and pathomechanisms for VCRL and Catel–Manzke Syndrome, including possible phenotype/genotype correlations as well as genetic causes of hypoplastic left heart syndrome. Full article
(This article belongs to the Special Issue Genetics of Rare Disease)
Show Figures

Graphical abstract

12 pages, 580 KiB  
Article
Effect of Genetically Low 25-Hydroxyvitamin D on Mortality Risk: Mendelian Randomization Analysis in 3 Large European Cohorts
by Thor Aspelund, Martin R. Grübler, Albert V. Smith, Elias F. Gudmundsson, Martin Keppel, Mary Frances Cotch, Tamara B. Harris, Rolf Jorde, Guri Grimnes, Ragnar Joakimsen, Henrik Schirmer, Tom Wilsgaard, Ellisiv B. Mathiesen, Inger Njølstad, Maja-Lisa Løchen, Winfried März, Marcus E. Kleber, Andreas Tomaschitz, Diana Grove-Laugesen, Lars Rejnmark, Karin M. A. Swart, Ingeborg A. Brouwer, Paul Lips, Natasja M. Van Schoor, Christopher T. Sempos, Ramón A. Durazo-Arvizu, Zuzana Škrabáková, Kirsten G. Dowling, Kevin D. Cashman, Mairead Kiely, Stefan Pilz, Vilmundur Gudnason and Gudny Eiriksdottiradd Show full author list remove Hide full author list
Nutrients 2019, 11(1), 74; https://doi.org/10.3390/nu11010074 - 2 Jan 2019
Cited by 31 | Viewed by 7954
Abstract
The aim of this study was to determine if increased mortality associated with low levels of serum 25-hydroxyvitamin D (25(OH)D) reflects a causal relationship by using a Mendelian randomisation (MR) approach with genetic variants in the vitamin D synthesis pathway. Individual participant data [...] Read more.
The aim of this study was to determine if increased mortality associated with low levels of serum 25-hydroxyvitamin D (25(OH)D) reflects a causal relationship by using a Mendelian randomisation (MR) approach with genetic variants in the vitamin D synthesis pathway. Individual participant data from three European cohorts were harmonized with standardization of 25(OH)D according to the Vitamin D Standardization Program. Most relevant single nucleotide polymorphisms of the genes CYP2R1 (rs12794714, rs10741657) and DHCR7/NADSYN1 (rs12785878, rs11234027), were combined in two allelic scores. Cox proportional hazards regression models were used with the ratio estimator and the delta method for calculating the hazards ratio (HR) and standard error of genetically determined 25(OH)D effect on all-cause mortality. We included 10,501 participants (50.1% females, 67.1±10.1 years) of whom 4003 died during a median follow-up of 10.4 years. The observed adjusted HR for all-cause mortality per decrease in 25(OH)D by 20 nmol/L was 1.20 (95% CI: 1.15–1.25). The HR per 20 nmol/L decrease in genetically determined 25(OH)D was 1.32 (95% CI: 0.80–2.24) and 1.35 (95% CI of 0.81 to 2.37) based on the two scores. In conclusion, the results of this MR study in a combined sample from three European cohort studies provide further support for a causal relationship between vitamin D deficiency and increased all-cause mortality. However, as the current study, even with ~10,000 participants, was underpowered for the study of the effect of the allele score on mortality, larger studies on genetics and mortality are needed to improve the precision. Full article
(This article belongs to the Special Issue Nutrition Intake and Skin Health: Vitamin D and beyond)
Show Figures

Figure 1

19 pages, 1454 KiB  
Article
Association between Vitamin D Deficiency and Single Nucleotide Polymorphisms in the Vitamin D Receptor and GC Genes and Analysis of Their Distribution in Mexican Postmenopausal Women
by Berenice Rivera-Paredez, Nayeli Macías, Mayeli M. Martínez-Aguilar, Alberto Hidalgo-Bravo, Mario Flores, Amado D. Quezada-Sánchez, Edgar Denova-Gutiérrez, Miguel Cid, Angelica Martínez-Hernández, Lorena Orozco, Manuel Quiterio, Yvonne N. Flores, Jorge Salmerón and Rafael Velázquez-Cruz
Nutrients 2018, 10(9), 1175; https://doi.org/10.3390/nu10091175 - 27 Aug 2018
Cited by 26 | Viewed by 5628
Abstract
Genome-wide association studies in people with European ancestry suggest that polymorphisms in genes involved in vitamin D (VD) metabolism have an effect on serum concentrations of 25-hydroxyvitamin D. However, nothing is known about these polymorphisms in populations with Amerindian ancestry. Our aim was [...] Read more.
Genome-wide association studies in people with European ancestry suggest that polymorphisms in genes involved in vitamin D (VD) metabolism have an effect on serum concentrations of 25-hydroxyvitamin D. However, nothing is known about these polymorphisms in populations with Amerindian ancestry. Our aim was to evaluate the association between genetic variants on the vitamin D receptor (VDR) and the vitamin D binding protein (GC) genes, involved in the VD pathway, and VD deficiency in 689 unrelated Mexican postmenopausal women. We also described the frequencies of these variants in 355 postmenopausal women from different ethnic groups. Based on our preliminary results of 400 unrelated Mexican postmenopausal women, three single nucleotide polymorphisms (SNPs) were selected for genotyping. The SNPs rs4516035 in VDR and rs2282679 in GC were associated with VD deficiency. Additionally, women who carried three risk alleles had a 3.67 times higher risk of suffering VD deficiency, compared to women with no risk alleles (p = 0.002). The rs4516035-C allele frequency in the Amerindian population was enriched in the South East region of Mexico. In contrast, the highest frequency of the rs2298850-C allele, a proxy for the tag SNP rs2282679, was observed in the South region. Our results indicate that genetic variants in VDR and GC genes are associated with VD deficiency in Mexican postmenopausal women. Moreover, an association was observed for the variants rs3794060 and rs4944957 of the DHCR7/NADSYN1 gene with osteopenia/osteoporosis. Full article
(This article belongs to the Special Issue Nutritional Status and Bone Health)
Show Figures

Graphical abstract

Back to TopTop