Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = N-oleoyldopamine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 508 KB  
Article
Activation of TRPV1-Expressing Renal Sensory Nerves of Rats with N-Oleoyldopamine Attenuates High-Fat-Diet-Induced Impairment of Renal Function
by Shuang-Quan Yu, Shuangtao Ma and Donna H. Wang
Int. J. Mol. Sci. 2023, 24(7), 6207; https://doi.org/10.3390/ijms24076207 - 25 Mar 2023
Cited by 2 | Viewed by 2230
Abstract
Enhanced renal sympathetic nerve activity (RSNA) contributes to obesity-induced renal disease, while the role of afferent renal nerve activity (ARNA) is not fully understood. The present study tested the hypothesis that activating the transient receptor potential vanilloid 1 (TRPV1) channel in afferent renal [...] Read more.
Enhanced renal sympathetic nerve activity (RSNA) contributes to obesity-induced renal disease, while the role of afferent renal nerve activity (ARNA) is not fully understood. The present study tested the hypothesis that activating the transient receptor potential vanilloid 1 (TRPV1) channel in afferent renal nerves suppresses RSNA and prevents renal dysfunction and hypertension in obese rats. N-oleoyldopamine (OLDA, 1 ng/kg, daily) was administrated intrathecally (T8-L3) via an indwelled catheter to chronically activate, TRPV1-positive afferent renal nerves in rats fed a chow diet or high-fat diet (HFD) for 8 weeks. HFD intake significantly increased the body weight, impaired glucose and insulin tolerance, decreased creatinine clearance, and elevated systolic blood pressure in rats compared with the levels of the chow-fed rats (all p < 0.05). An intrathecal OLDA treatment for 8 weeks did not affect the fasting glucose level, glucose tolerance, and insulin tolerance in rats fed either chow or HFD. As expected, the chronic OLDA treatment significantly increased the levels of plasma calcitonin gene-related peptide and substance P and ARNA in the HFD-fed rats (all p < 0.05). Interestingly, the OLDA treatment decreased the urinary norepinephrine level and RSNA in rats fed HFD (both p < 0.05). Importantly, the OLDA treatment attenuated HFD-induced decreases in creatinine clearance and urinary Na+ excretion and increases in the plasma urea level, urinary albumin level, and systolic blood pressure at the end of an 8-week treatment (all p < 0.05). Taken together, the intrathecal administration of OLDA ameliorates the enhancement of RSNA, renal dysfunction, and hypertension in obese rats. These findings shed light on the roles of TRPV1-positive renal afferent nerves in obesity-related renal dysfunction and hypertension. Full article
(This article belongs to the Special Issue Targeting TRP Channels for Pain, Itch and Inflammation Relief)
Show Figures

Figure 1

14 pages, 1818 KB  
Article
N-Acyl Dopamines Induce Apoptosis in Endometrial Stromal Cells from Patients with Endometriosis
by Alina M. Gamisonia, Marina N. Yushina, Irina A. Fedorova-Gogolina, Mikhail G. Akimov, Chupalav M. Eldarov, Stanislav V. Pavlovich, Vladimir V. Bezuglov, Natalia M. Gretskaya, Gennady T. Sukhikh and Mikhail Yu. Bobrov
Int. J. Mol. Sci. 2021, 22(19), 10648; https://doi.org/10.3390/ijms221910648 - 30 Sep 2021
Cited by 7 | Viewed by 2787
Abstract
Endometriosis is characterized by the formation and development of endometrial tissues outside the uterus, based on an imbalance between proliferation and cell death, leading to the uncontrolled growth of ectopic foci. The potential target for the regulation of these processes is the endocannabinoid [...] Read more.
Endometriosis is characterized by the formation and development of endometrial tissues outside the uterus, based on an imbalance between proliferation and cell death, leading to the uncontrolled growth of ectopic foci. The potential target for the regulation of these processes is the endocannabinoid system, which was found to be involved in the migration, proliferation, and survival of tumor cells. In this paper, we investigated the effect of endocannabinoid-like compounds from the N-acyl dopamine (NADA) family on the viability of stromal cells from ectopic and eutopic endometrium of patients with ovarian endometriosis. N-arachidonoyldopamine, N-docosahexaenoyldopamine, and N-oleoyldopamine have been shown to have a five-times-more-selective cytotoxic effect on endometrioid stromal cells. To study the mechanisms of the toxic effect, inhibitory analysis, measurements of caspase-3/9 activity, reactive oxygen species, and the mitochondrial membrane potential were performed. It was found that NADA induced apoptosis via an intrinsic pathway through the CB1 receptor and downstream serine palmitoyltransferase, NO synthase activation, increased ROS production, and mitochondrial dysfunction. The higher selectivity of NADA for endometriotic stromal cells and the current lack of effective drug treatment can be considered positive factors for further research of these compounds as possible therapeutic agents against endometriosis. Full article
(This article belongs to the Special Issue Endometriosis: Biological Targets and New Therapeutical Approaches)
Show Figures

Figure 1

12 pages, 1749 KB  
Article
Hypersensitivity Induced by Intrathecal Bradykinin Administration Is Enhanced by N-oleoyldopamine (OLDA) and Prevented by TRPV1 Antagonist
by Eva Uchytilova, Diana Spicarova and Jiri Palecek
Int. J. Mol. Sci. 2021, 22(7), 3712; https://doi.org/10.3390/ijms22073712 - 2 Apr 2021
Cited by 10 | Viewed by 2850
Abstract
Transient receptor potential vanilloid 1 (TRPV1) channels contribute to the development of several chronic pain states and represent a possible therapeutic target in many painful disease treatment. Proinflammatory mediator bradykinin (BK) sensitizes TRPV1, whereas noxious peripheral stimulation increases BK level in the spinal [...] Read more.
Transient receptor potential vanilloid 1 (TRPV1) channels contribute to the development of several chronic pain states and represent a possible therapeutic target in many painful disease treatment. Proinflammatory mediator bradykinin (BK) sensitizes TRPV1, whereas noxious peripheral stimulation increases BK level in the spinal cord. Here, we investigated the involvement of spinal TRPV1 in thermal and mechanical hypersensitivity, evoked by intrathecal (i.t.) administration of BK and an endogenous agonist of TRPV1, N-oleoyldopamine (OLDA), using behavioral tests and i.t. catheter implantation, and administration of BK-induced transient thermal and mechanical hyperalgesia and mechanical allodynia. All these hypersensitive states were enhanced by co-administration of a low dose of OLDA (0.42 µg i.t.), which was ineffective only under the control conditions. Intrathecal pretreatment with TRPV1 selective antagonist SB366791 prevented hypersensitivity induced by i.t. co-administration of BK and OLDA. Our results demonstrate that both thermal and mechanical hypersensitivity evoked by co-administration of BK and OLDA is mediated by the activation of spinal TRPV1 channels. Full article
Show Figures

Figure 1

Back to TopTop