Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = N-linked glycosites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1676 KiB  
Review
Site-Specific O-glycosylation of SARS-CoV-2 Spike Protein and Its Impact on Immune and Autoimmune Responses
by Franz-Georg Hanisch
Cells 2024, 13(2), 107; https://doi.org/10.3390/cells13020107 - 5 Jan 2024
Cited by 1 | Viewed by 2856
Abstract
The world-wide COVID-19 pandemic has promoted a series of alternative vaccination strategies aiming to elicit neutralizing adaptive immunity in the human host. However, restricted efficacies of these vaccines targeting epitopes on the spike (S) protein that is involved in primary viral entry were [...] Read more.
The world-wide COVID-19 pandemic has promoted a series of alternative vaccination strategies aiming to elicit neutralizing adaptive immunity in the human host. However, restricted efficacies of these vaccines targeting epitopes on the spike (S) protein that is involved in primary viral entry were observed and putatively assigned to viral glycosylation as an effective escape mechanism. Besides the well-recognized N-glycan shield covering SARS-CoV-2 spike (S) proteins, immunization strategies may be hampered by heavy O-glycosylation and variable O-glycosites fluctuating depending on the organ sites of primary infection and those involved in immunization. A further complication associated with viral glycosylation arises from the development of autoimmune antibodies to self-carbohydrates, including O-linked blood group antigens, as structural parts of viral proteins. This outline already emphasizes the importance of viral glycosylation in general and, in particular, highlights the impact of the site-specific O-glycosylation of virions, since this modification is independent of sequons and varies strongly in dependence on cell-specific repertoires of peptidyl-N-acetylgalactosaminyltransferases with their varying site preferences and of glycan core-specific glycosyltransferases. This review summarizes the current knowledge on the viral O-glycosylation of the SARS-CoV-2 spike protein and its impact on virulence and immune modulation in the host. Full article
(This article belongs to the Collection Glycosylation and Cell Biology)
Show Figures

Figure 1

16 pages, 3331 KiB  
Article
Glycomic, Glycoproteomic, and Proteomic Profiling of Philippine Lung Cancer and Peritumoral Tissues: Case Series Study of Patients Stages I–III
by Michael Russelle Alvarez, Qingwen Zhou, Jennyfer Tena, Mariana Barboza, Maurice Wong, Yixuan Xie, Carlito B. Lebrilla, Michelle Cabanatan, Ma. Teresa Barzaga, Nelia Tan-Liu, Francisco M. Heralde, Luster Serrano, Ruel C. Nacario and Gladys Cherisse Completo
Cancers 2023, 15(5), 1559; https://doi.org/10.3390/cancers15051559 - 2 Mar 2023
Cited by 8 | Viewed by 3334
Abstract
Lung cancer is the leading cause of cancer death and non-small cell lung carcinoma (NSCLC) accounting for majority of lung cancers. Thus, it is important to find potential biomarkers, such as glycans and glycoproteins, which can be used as diagnostic tools against NSCLC. [...] Read more.
Lung cancer is the leading cause of cancer death and non-small cell lung carcinoma (NSCLC) accounting for majority of lung cancers. Thus, it is important to find potential biomarkers, such as glycans and glycoproteins, which can be used as diagnostic tools against NSCLC. Here, the N-glycome, proteome, and N-glycosylation distribution maps of tumor and peritumoral tissues of Filipino lung cancer patients (n = 5) were characterized. We present several case studies with varying stages of cancer development (I−III), mutation status (EGFR, ALK), and biomarker expression based on a three-gene panel (CD133, KRT19, and MUC1). Although the profiles of each patient were unique, specific trends arose that correlated with the role of aberrant glycosylation in cancer progression. Specifically, we observed a general increase in the relative abundance of high-mannose and sialofucosylated N-glycans in tumor samples. Analysis of the glycan distribution per glycosite revealed that these sialofucosylated N-glycans were specifically attached to glycoproteins involved in key cellular processes, including metabolism, cell adhesion, and regulatory pathways. Protein expression profiles showed significant enrichment of dysregulated proteins involved in metabolism, adhesion, cell−ECM interactions, and N-linked glycosylation, supporting the protein glycosylation results. The present case series study provides the first demonstration of a multi-platform mass-spectrometric analysis specifically for Filipino lung cancer patients. Full article
(This article belongs to the Special Issue Glycosylation in Cancer—Biomarkers and Targeted Therapies)
Show Figures

Figure 1

15 pages, 2280 KiB  
Article
Proteome and Glycoproteome Analyses Reveal the Protein N-Linked Glycosylation Specificity of STT3A and STT3B
by Piaopiao Wen, Jingru Chen, Chenyang Zuo, Xiaodong Gao, Morihisa Fujita and Ganglong Yang
Cells 2022, 11(18), 2775; https://doi.org/10.3390/cells11182775 - 6 Sep 2022
Cited by 10 | Viewed by 3531
Abstract
STT3A and STT3B are the main catalytic subunits of the oligosaccharyltransferase complex (OST-A and OST-B in mammalian cells), which primarily mediate cotranslational and post-translocational N-linked glycosylation, respectively. To determine the specificity of STT3A and STT3B, we performed proteomic and glycoproteomic analyses in the [...] Read more.
STT3A and STT3B are the main catalytic subunits of the oligosaccharyltransferase complex (OST-A and OST-B in mammalian cells), which primarily mediate cotranslational and post-translocational N-linked glycosylation, respectively. To determine the specificity of STT3A and STT3B, we performed proteomic and glycoproteomic analyses in the gene knock-out (KO) and wild-type HEK293 cells. In total, 3961 proteins, 4265 unique N-linked intact glycopeptides and 629 glycosites representing 349 glycoproteins were identified from all these cells. Deletion of the STT3A gene had a greater impact on the protein expression than deletion of STT3B, especially on glycoproteins. In addition, total mannosylated N-glycans were reduced and fucosylated N-glycans were increased in STT3A-KO cells, which were caused by the differential expression of glycan-related enzymes. Interestingly, hyperglycosylated proteins were identified in KO cells, and the hyperglycosylation of ENPL was caused by the endoplasmic reticulum (ER) stress due to the STT3A deletion. Furthermore, the increased expression of the ATF6 and PERK indicated that the unfolded protein response also happened in STT3A-KO cells. Overall, the specificity of STT3A and STT3B revealed that defects in the OST subunit not only broadly affect N-linked glycosylation of the protein but also affect protein expression. Full article
Show Figures

Figure 1

21 pages, 4694 KiB  
Article
An Integrated Mass Spectrometry-Based Glycomics-Driven Glycoproteomics Analytical Platform to Functionally Characterize Glycosylation Inhibitors
by Michael Russelle S. Alvarez, Qingwen Zhou, Sheryl Joyce B. Grijaldo, Carlito B. Lebrilla, Ruel C. Nacario, Francisco M. Heralde, Jomar F. Rabajante and Gladys C. Completo
Molecules 2022, 27(12), 3834; https://doi.org/10.3390/molecules27123834 - 14 Jun 2022
Cited by 12 | Viewed by 4281
Abstract
Cancer progression is linked to aberrant protein glycosylation due to the overexpression of several glycosylation enzymes. These enzymes are underexploited as potential anticancer drug targets and the development of rapid-screening methods and identification of glycosylation inhibitors are highly sought. An integrated bioinformatics and [...] Read more.
Cancer progression is linked to aberrant protein glycosylation due to the overexpression of several glycosylation enzymes. These enzymes are underexploited as potential anticancer drug targets and the development of rapid-screening methods and identification of glycosylation inhibitors are highly sought. An integrated bioinformatics and mass spectrometry-based glycomics-driven glycoproteomics analysis pipeline was performed to identify an N-glycan inhibitor against lung cancer cells. Combined network pharmacology and in silico screening approaches were used to identify a potential inhibitor, pictilisib, against several glycosylation-related proteins, such as Alpha1-6FucT, GlcNAcT-V, and Alpha2,6-ST-I. A glycomics assay of lung cancer cells treated with pictilisib showed a significant reduction in the fucosylation and sialylation of N-glycans, with an increase in high mannose-type glycans. Proteomics analysis and in vitro assays also showed significant upregulation of the proteins involved in apoptosis and cell adhesion, and the downregulation of proteins involved in cell cycle regulation, mRNA processing, and protein translation. Site-specific glycoproteomics analysis further showed that glycoproteins with reduced fucosylation and sialylation were involved in apoptosis, cell adhesion, DNA damage repair, and chemical response processes. To determine how the alterations in N-glycosylation impact glycoprotein dynamics, modeling of changes in glycan interactions of the ITGA5–ITGB1 (Integrin alpha 5-Integrin beta-1) complex revealed specific glycosites at the interface of these proteins that, when highly fucosylated and sialylated, such as in untreated A549 cells, form greater hydrogen bonding interactions compared to the high mannose-types in pictilisib-treated A549 cells. This study highlights the use of mass spectrometry to identify a potential glycosylation inhibitor and assessment of its impact on cell surface glycoprotein abundance and protein–protein interaction. Full article
(This article belongs to the Special Issue (Mass Spectrometric) Non Target Screening–Techniques and Strategies)
Show Figures

Figure 1

19 pages, 5920 KiB  
Article
DeepNGlyPred: A Deep Neural Network-Based Approach for Human N-Linked Glycosylation Site Prediction
by Subash C. Pakhrin, Kiyoko F. Aoki-Kinoshita, Doina Caragea and Dukka B. KC
Molecules 2021, 26(23), 7314; https://doi.org/10.3390/molecules26237314 - 2 Dec 2021
Cited by 27 | Viewed by 6402
Abstract
Protein N-linked glycosylation is a post-translational modification that plays an important role in a myriad of biological processes. Computational prediction approaches serve as complementary methods for the characterization of glycosylation sites. Most of the existing predictors for N-linked glycosylation utilize the information that [...] Read more.
Protein N-linked glycosylation is a post-translational modification that plays an important role in a myriad of biological processes. Computational prediction approaches serve as complementary methods for the characterization of glycosylation sites. Most of the existing predictors for N-linked glycosylation utilize the information that the glycosylation site occurs at the N-X-[S/T] sequon, where X is any amino acid except proline. Not all N-X-[S/T] sequons are glycosylated, thus the N-X-[S/T] sequon is a necessary but not sufficient determinant for protein glycosylation. In that regard, computational prediction of N-linked glycosylation sites confined to N-X-[S/T] sequons is an important problem. Here, we report DeepNGlyPred a deep learning-based approach that encodes the positive and negative sequences in the human proteome dataset (extracted from N-GlycositeAtlas) using sequence-based features (gapped-dipeptide), predicted structural features, and evolutionary information. DeepNGlyPred produces SN, SP, MCC, and ACC of 88.62%, 73.92%, 0.60, and 79.41%, respectively on N-GlyDE independent test set, which is better than the compared approaches. These results demonstrate that DeepNGlyPred is a robust computational technique to predict N-Linked glycosylation sites confined to N-X-[S/T] sequon. DeepNGlyPred will be a useful resource for the glycobiology community. Full article
Show Figures

Figure 1

16 pages, 2661 KiB  
Article
Differential Glycosite Profiling—A Versatile Method to Compare Membrane Glycoproteomes
by Malwina Michalak, Martin Simon Kalteis, Aysel Ahadova, Matthias Kloor, Mark Kriegsmann, Katharina Kriegsmann, Uwe Warnken, Dominic Helm and Jürgen Kopitz
Molecules 2021, 26(12), 3564; https://doi.org/10.3390/molecules26123564 - 10 Jun 2021
Viewed by 2695
Abstract
Glycosylation is the most prevalent and varied form of post-translational protein modifications. Protein glycosylation regulates multiple cellular functions, including protein folding, cell adhesion, molecular trafficking and clearance, receptor activation, signal transduction, and endocytosis. In particular, membrane proteins are frequently highly glycosylated, which is [...] Read more.
Glycosylation is the most prevalent and varied form of post-translational protein modifications. Protein glycosylation regulates multiple cellular functions, including protein folding, cell adhesion, molecular trafficking and clearance, receptor activation, signal transduction, and endocytosis. In particular, membrane proteins are frequently highly glycosylated, which is both linked to physiological processes and of high relevance in various disease mechanisms. The cellular glycome is increasingly considered to be a therapeutic target. Here we describe a new strategy to compare membrane glycoproteomes, thereby identifying proteins with altered glycan structures and the respective glycosites. The workflow started with an optimized procedure for the digestion of membrane proteins followed by the lectin-based isolation of glycopeptides. Since alterations in the glycan part of a glycopeptide cause mass alterations, analytical size exclusion chromatography was applied to detect these mass shifts. N-glycosidase treatment combined with nanoUPLC-coupled mass spectrometry identified the altered glycoproteins and respective glycosites. The methodology was established using the colon cancer cell line CX1, which was treated with 2-deoxy-glucose—a modulator of N-glycosylation. The described methodology is not restricted to cell culture, as it can also be adapted to tissue samples or body fluids. Altogether, it is a useful module in various experimental settings that target glycan functions. Full article
(This article belongs to the Special Issue Advancements in Analytical Techniques for Proteomics)
Show Figures

Graphical abstract

14 pages, 2237 KiB  
Article
Site-Specific O-Glycosylation Analysis of SARS-CoV-2 Spike Protein Produced in Insect and Human Cells
by Ieva Bagdonaite, Andrew J. Thompson, Xiaoning Wang, Max Søgaard, Cyrielle Fougeroux, Martin Frank, Jolene K. Diedrich, John R. Yates, Ali Salanti, Sergey Y. Vakhrushev, James C. Paulson and Hans H. Wandall
Viruses 2021, 13(4), 551; https://doi.org/10.3390/v13040551 - 25 Mar 2021
Cited by 61 | Viewed by 7463
Abstract
Enveloped viruses hijack not only the host translation processes, but also its glycosylation machinery, and to a variable extent cover viral surface proteins with tolerogenic host-like structures. SARS-CoV-2 surface protein S presents as a trimer on the viral surface and is covered by [...] Read more.
Enveloped viruses hijack not only the host translation processes, but also its glycosylation machinery, and to a variable extent cover viral surface proteins with tolerogenic host-like structures. SARS-CoV-2 surface protein S presents as a trimer on the viral surface and is covered by a dense shield of N-linked glycans, and a few O-glycosites have been reported. The location of O-glycans is controlled by a large family of initiating enzymes with variable expression in cells and tissues and hence is difficult to predict. Here, we used our well-established O-glycoproteomic workflows to map the precise positions of O-linked glycosylation sites on three different entities of protein S—insect cell or human cell-produced ectodomains, or insect cell derived receptor binding domain (RBD). In total 25 O-glycosites were identified, with similar patterns in the two ectodomains of different cell origin, and a distinct pattern of the monomeric RBD. Strikingly, 16 out of 25 O-glycosites were located within three amino acids from known N-glycosites. However, O-glycosylation was primarily found on peptides that were unoccupied by N-glycans, and otherwise had low overall occupancy. This suggests possible complementary functions of O-glycans in immune shielding and negligible effects of O-glycosylation on subunit vaccine design for SARS-CoV-2. Full article
(This article belongs to the Special Issue Glycans in Viral Infection and Immunity)
Show Figures

Graphical abstract

16 pages, 1821 KiB  
Article
Comparison of Three Glycoproteomic Methods for the Analysis of the Secretome of CHO Cells Treated with 1,3,4-O-Bu3ManNAc
by Joseph L. Mertz, Shisheng Sun, Bojiao Yin, Yingwei Hu, Rahul Bhattacharya, Michael J. Bettenbaugh, Kevin J. Yarema and Hui Zhang
Bioengineering 2020, 7(4), 144; https://doi.org/10.3390/bioengineering7040144 - 10 Nov 2020
Cited by 3 | Viewed by 4392
Abstract
Comprehensive analysis of the glycoproteome is critical due to the importance of glycosylation to many aspects of protein function. The tremendous complexity of this post-translational modification, however, makes it difficult to adequately characterize the glycoproteome using any single method. To overcome this pitfall, [...] Read more.
Comprehensive analysis of the glycoproteome is critical due to the importance of glycosylation to many aspects of protein function. The tremendous complexity of this post-translational modification, however, makes it difficult to adequately characterize the glycoproteome using any single method. To overcome this pitfall, in this report we compared three glycoproteomic analysis methods; first the recently developed N-linked glycans and glycosite-containing peptides (NGAG) chemoenzymatic method, second, solid-phase extraction of N-linked glycoproteins (SPEG), and third, hydrophilic interaction liquid chromatography (HILIC) by characterizing N-linked glycosites in the secretome of Chinese hamster ovary (CHO) cells. Interestingly, the glycosites identified by SPEG and HILIC overlapped considerably whereas NGAG identified many glycosites not observed in the other two methods. Further, utilizing enhanced intact glycopeptide identification afforded by the NGAG workflow, we found that the sugar analog 1,3,4-O-Bu3ManNAc, a “high flux” metabolic precursor for sialic acid biosynthesis, increased sialylation of secreted proteins including recombinant human erythropoietin (rhEPO). Full article
Show Figures

Figure 1

14 pages, 1585 KiB  
Article
N-Glycoproteomic Profiling Reveals Alteration In Extracellular Matrix Organization In Non-Type Bladder Carcinoma
by Barnali Deb, Krishna Patel, Gajanan Sathe and Prashant Kumar
J. Clin. Med. 2019, 8(9), 1303; https://doi.org/10.3390/jcm8091303 - 24 Aug 2019
Cited by 13 | Viewed by 3489
Abstract
Treatment of advanced and metastatic bladder carcinoma is often ineffective and displays variable clinical outcomes. Studying this aggressive molecular subtype of bladder carcinoma will lead to better understanding of the pathogenesis which may lead to the identification of new therapeutic strategies. The non-type [...] Read more.
Treatment of advanced and metastatic bladder carcinoma is often ineffective and displays variable clinical outcomes. Studying this aggressive molecular subtype of bladder carcinoma will lead to better understanding of the pathogenesis which may lead to the identification of new therapeutic strategies. The non-type bladder subtype is phenotypically mesenchymal and has mesenchymal features with a high metastatic ability. Post-translational addition of oligosaccharide residues is an important modification that influences cellular functions and contributes to disease pathology. Here, we report the comparative analysis of N-linked glycosylation across bladder cancer subtypes. To analyze the glycosite-containing peptides, we carried out LC-MS/MS-based quantitative proteomic and glycoproteomic profiling. We identified 1299 unique N-linked glycopeptides corresponding to 460 proteins. Additionally, we identified 118 unique N-linked glycopeptides corresponding to 84 proteins to be differentially glycosylated only in non-type subtypes as compared to luminal/basal subtypes. Most of the altered glycoproteins were also observed with changes in their global protein expression levels. However, alterations in 55 differentially expressed glycoproteins showed no significant change at the protein abundance level, representing that the glycosylation site occupancy was changed between the non-type subtype and luminal/basal subtypes. Importantly, the extracellular matrix organization pathway was dysregulated in the non-type subtype of bladder carcinoma. N-glycosylation modifications in the extracellular matrix organization proteins may be a contributing factor for the mesenchymal aggressive phenotype in non-type subtype. These aberrant protein glycosylation would provide additional avenues to employ glycan-based therapies and may lead to the identification of novel therapeutic targets. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Graphical abstract

17 pages, 1972 KiB  
Article
Overcoming Challenges and Opening New Opportunities in Glycoproteomics
by Ten-Yang Yen, Sucharita M. Dutta, Christina Litsakos-Cheung, Alejandro A. Corona, Leslie C. Timpe and Bruce A. Macher
Biomolecules 2013, 3(2), 270-286; https://doi.org/10.3390/biom3020270 - 26 Mar 2013
Cited by 7 | Viewed by 7482
Abstract
Glycoproteomics has emerged as a prime area of interest within the field of proteomics because glycoproteins have been shown to function as biomarkers for disease and as promising therapeutic targets. A significant challenge in the study of glycoproteins is the fact that they [...] Read more.
Glycoproteomics has emerged as a prime area of interest within the field of proteomics because glycoproteins have been shown to function as biomarkers for disease and as promising therapeutic targets. A significant challenge in the study of glycoproteins is the fact that they are expressed in relatively low abundance in cells. In response, various enrichment methods have been developed to improve the detection of glycoproteins. One such method involves their capture via oxidation of their glycan chains and covalent attachment with hydrazide resins which, when catalyzed by PNGase F, release N-linked glycans and convert the glycosite Asn to Asp; this conversion is identifiable with LC/ESI-MS/MS as a corresponding increase of 0.984 Da in molecular weight. The present study builds on this body of work, providing evidence of three additional strategies that improve glycoprotein identification: (1) use of a high resolution mass spectrometer—the Q Exactive MS—which delivers 2–3 times more glycoprotein identifications than a low resolution MS; (2) optimization of instrument settings and database search parameters to reduce misidentification of N-linked glycopeptides to ~1 percent; and (3) labeling glycopeptides with 18O during PNGase F treatment to locate N-linked glycosites within peptides containing multiple N-linked sequons. Full article
(This article belongs to the Special Issue Challenges in Glycan, Glycoprotein and Proteoglycan Research)
Show Figures

Graphical abstract

Back to TopTop