Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Mycobacterium abscessus subspecies massiliense

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 545 KiB  
Article
Analysis of Phenotypic and Genotypic Susceptibility to Clarithromycin and Amikacin of Mycobacterium abscessus Complex Strains Isolated from Cystic Fibrosis Patients
by Juan Carlos Cao Yao, Jesús Navas Méndez and María Teresa Tórtola Fernández
Microorganisms 2023, 11(12), 2897; https://doi.org/10.3390/microorganisms11122897 - 30 Nov 2023
Cited by 3 | Viewed by 1653
Abstract
Mycobacterium abscessus complex infections are ever on the rise. To curb their increasing evolution, we performed an in-depth study of 43 clinical isolates of cystic fibrosis patients obtained from 2009 to 2020. We identified their subspecies, uncovered their genotypic resistance profiles, characterised their [...] Read more.
Mycobacterium abscessus complex infections are ever on the rise. To curb their increasing evolution, we performed an in-depth study of 43 clinical isolates of cystic fibrosis patients obtained from 2009 to 2020. We identified their subspecies, uncovered their genotypic resistance profiles, characterised their antibiotic-resistant genes, and assessed their phenotypic antibiotic susceptibilities. The phenotypic and genotypic methods showed total agreement in terms of resistance to clarithromycin and amikacin. Of the 43 clinical strains, 28 belonged to M. abscessus subsp. abscessus (65.1%), 13 to M. abscessus subsp. massiliense (30.2%), and 2 to M. abscessus subsp. bolletii (4.6%). The resistant rates for clarithromycin and amikacin, the two main drugs against M. abscessus complex pulmonary infections, were 64.2% and 14.2%, respectively. We found three strains of M. abscessus subsp. abscessus that showed heteroresistance in the rrl and rrs genes, and these strains also presented double-resistance since they were macrolide- and aminoglycoside-resistant. M. abscessus subsp. abscessus showed a high minimum inhibitory concentration (MIC) and a resistant percentage larger than or equal to 88% to cefoxitin, ciprofloxacin, moxifloxacin, doxycycline, imipenem, and trimethoprim-sulfamethoxazole. These results show a panorama of the high resistance of Mycobacterium abscessus complex to current drugs for cystic fibrosis patients. Thus, other treatment methods are urgently needed. Full article
(This article belongs to the Special Issue Advances in Antibiotic and Drug-Resistance Mechanisms)
Show Figures

Figure 1

14 pages, 4289 KiB  
Article
Rapid and Accurate Discrimination of Mycobacterium abscessus Subspecies Based on Matrix-Assisted Laser Desorption Ionization-Time of Flight Spectrum and Machine Learning Algorithms
by Hsin-Yao Wang, Chi-Heng Kuo, Chia-Ru Chung, Wan-Ying Lin, Yu-Chiang Wang, Ting-Wei Lin, Jia-Ruei Yu, Jang-Jih Lu and Ting-Shu Wu
Biomedicines 2023, 11(1), 45; https://doi.org/10.3390/biomedicines11010045 - 25 Dec 2022
Cited by 12 | Viewed by 2857
Abstract
Mycobacterium abscessus complex (MABC) has been reported to cause complicated infections. Subspecies identification of MABC is crucial for adequate treatment due to different antimicrobial resistance properties amid subspecies. However, long incubation days are needed for the traditional antibiotic susceptibility testing (AST). Delayed effective [...] Read more.
Mycobacterium abscessus complex (MABC) has been reported to cause complicated infections. Subspecies identification of MABC is crucial for adequate treatment due to different antimicrobial resistance properties amid subspecies. However, long incubation days are needed for the traditional antibiotic susceptibility testing (AST). Delayed effective antibiotics administration often causes unfavorable outcomes. Thus, we proposed a novel approach to identify subspecies and potential antibiotic resistance, guiding early and accurate treatment. Subspecies of MABC isolates were determined by secA1, rpoB, and hsp65. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI–TOF MS) spectra were analyzed, and informative peaks were detected by random forest (RF) importance. Machine learning (ML) algorithms were used to build models for classifying MABC subspecies based on spectrum. The models were validated by repeated five-fold cross-validation to avoid over-fitting. In total, 102 MABC isolates (52 subspecies abscessus and 50 subspecies massiliense) were analyzed. Top informative peaks including m/z 6715, 4739, etc. were identified. RF model attained AUROC of 0.9166 (95% CI: 0.9072–0.9196) and outperformed other algorithms in discriminating abscessus from massiliense. We developed a MALDI–TOF based ML model for rapid and accurate MABC subspecies identification. Due to the significant correlation between subspecies and corresponding antibiotics resistance, this diagnostic tool guides a more precise and timelier MABC subspecies-specific treatment. Full article
Show Figures

Figure 1

13 pages, 5571 KiB  
Article
Whole-Genome Sequencing and Drug-Susceptibility Analysis of Serial Mycobacterium abscessus Isolates from Thai Patients
by Orawee Kaewprasert, Ditthawat Nonghanphithak, Ploenchan Chetchotisakd, Wises Namwat, Rick Twee-Hee Ong and Kiatichai Faksri
Biology 2022, 11(9), 1319; https://doi.org/10.3390/biology11091319 - 5 Sep 2022
Cited by 7 | Viewed by 2759
Abstract
Mycobacterium abscessus is an important pathogen that can cause serious human diseases and is difficult to treat due to antibiotic resistance. In this study, we analyzed, using whole-genome sequence (WGS) data, M. abscessus strains serially isolated from patients at various time intervals. We [...] Read more.
Mycobacterium abscessus is an important pathogen that can cause serious human diseases and is difficult to treat due to antibiotic resistance. In this study, we analyzed, using whole-genome sequence (WGS) data, M. abscessus strains serially isolated from patients at various time intervals. We undertook genetic diversity analysis between subspecies, mutation-rate estimation and identification of drug-resistant mutations with minimum inhibitory concentration (MIC) analysis. Clonal isolates of M. abscessus:—subsp. abscessus (MAB) and subsp. massiliense (MMAS)—causing persistent infection through time, differed by 0–7 and 0–14 SNPs, respectively, despite being isolated 1 to 659 days apart. Two cases caused by MMAS differed by ≥102 SNPs at 350 days apart and were regarded as examples of reinfection. Isolates collected ≤7 days apart exhibited a high mutation rate (133.83 ± 0.00 SNPs/genome (5 Mb)/year for MMAS and 127.75 SNPs/genome (5 Mb)/year for MAB). Mutation rates declined in a time-dependent manner in both subspecies. Based on isolates collected > 180 days apart, MMAS had a significantly higher average mutation rate than MAB (2.89 ± 1.02 versus 0.82 ± 0.83 SNPs/genome (5 Mb)/year, (p = 0.01), respectively). All well-known drug-resistance mutations were found to be strongly associated with high MIC levels for clarithromycin and ciprofloxacin. No known mutations were identified for strains resistant to linezolid and amikacin. MAB strains in the study were susceptible to amikacin, while most MMAS strains were susceptible to clarithromycin, amikacin and linezolid. No hetero-resistance was found in the strains analyzed. Our study reports the genetic diversity and mutation rate of M. abscessus between the two major subspecies and confirms the drug resistance-associated mutations. Information about drug-resistance and associated mutations can be applied in diagnosis and patient management. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

13 pages, 703 KiB  
Article
Mycobacterioses Induced by Mycobacterium abscessus: Case Studies Indicating the Importance of Molecular Analysis for the Identification of Antibiotic Resistance
by Lenka Ryskova, Radka Bolehovska, Rudolf Kukla, Michal Svarc, Alzbeta Zavrelova, Hubert Vanicek, Ivo Pavlik and Pavel Bostik
Antibiotics 2022, 11(7), 873; https://doi.org/10.3390/antibiotics11070873 - 28 Jun 2022
Cited by 3 | Viewed by 2519
Abstract
Mycobacterioses are less frequently occurring but serious diseases. In recent years, at a global level, the incidence of mycobacterioses induced by the rapidly growing species Mycobacterium abscessus (M. a.), which is considered to be the most resistant to antibiotics and most [...] Read more.
Mycobacterioses are less frequently occurring but serious diseases. In recent years, at a global level, the incidence of mycobacterioses induced by the rapidly growing species Mycobacterium abscessus (M. a.), which is considered to be the most resistant to antibiotics and most difficult to treat, has been on the rise. Correct identification to the level of the subspecies (M. a. abscessus, M. a. massiliense, and M. a. bolletii) and determination of its sensitivity to macrolides, which are the basis of combination therapy, are of principal importance for the management of the disease. We describe five cases of mycobacterioses caused by M. a., where the sequencing of select genes was performed to identify the individual subspecies and antibiotic resistance. The analysis of the rpoB gene showed two isolates each of M. a. abscessus and M. a. massiliense and one isolate of M. a. bolletii. The complete (full length) erm(41) gene responsible for the development of inducible resistance to macrolides was demonstrated in both M. a. abscessus and M. a. bolletii isolates. A partially deleted and non-functional erm(41) gene was demonstrated in M. a. massiliense isolates. The subsequent sequencing of the full length erm(41) gene products showed, however, the mutation (T28→C) in both isolates of M. a. abscessus, causing a loss of the function and preserved sensitivity to macrolides. The antibiotic sensitivity testing confirmed that both the isolates of M. a. abscessus and M. a. massiliense were sensitive to clarithromycin even after prolonged 14-day incubation. The inducible resistance to clarithromycin was maintained only in M. a. bolletii. Thus, the sequence analysis of the erm(41) gene can reliably identify the preservation of sensitivity to macrolides and serve as an important tool in the establishment of therapeutic regimens in cases of infections with M. abscessus. Full article
Show Figures

Figure 1

20 pages, 3583 KiB  
Review
Phage Therapy for Mycobacterium Abscessus and Strategies to Improve Outcomes
by Abdolrazagh Hashemi Shahraki and Mehdi Mirsaeidi
Microorganisms 2021, 9(3), 596; https://doi.org/10.3390/microorganisms9030596 - 14 Mar 2021
Cited by 20 | Viewed by 6630
Abstract
Members of Mycobacterium abscessus complex are known for causing severe, chronic infections. Members of M. abscessus are a new “antibiotic nightmare” as one of the most resistant organisms to chemotherapeutic agents. Treatment of these infections is challenging due to the either intrinsic or [...] Read more.
Members of Mycobacterium abscessus complex are known for causing severe, chronic infections. Members of M. abscessus are a new “antibiotic nightmare” as one of the most resistant organisms to chemotherapeutic agents. Treatment of these infections is challenging due to the either intrinsic or acquired resistance of the M. abscessus complex to the available antibiotics. Recently, successful phage therapy with a cocktail of three phages (one natural lytic phage and two engineered phages) every 12 h for at least 32 weeks has been reported against a severe case of the disseminated M. abscessus subsp. massiliense infection, which underlines the high value of phages against drug-resistant superbugs. This report also highlighted the limitations of phage therapy, such as the absence of lytic phages with a broad host-range against all strains and subspecies of the M. abscessus complex and also the risk of phage resistant bacteria over treatment. Cutting-edge genomic technologies have facilitated the development of engineered phages for therapeutic purposes by introducing new desirable properties, changing host-range and arming the phages with additional killing genes. Here, we review the available literature and suggest new potential solutions based on the progress in phage engineering that can help to overcome the present limitations of M. abscessus treatment. Full article
(This article belongs to the Special Issue Old and New Challenges in Mycobacterium Infection Treatment)
Show Figures

Figure 1

Back to TopTop