Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Murun alkaline complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6877 KiB  
Article
Frankamenite: Relationship between the Crystal–Chemical and Vibrational Properties
by Ekaterina Kaneva, Roman Shendrik, Elizaveta Pankrushina, Emilia Dokuchits, Tatiana Radomskaya, Mikhail Pechurin and Aleksey Ushakov
Minerals 2023, 13(8), 1017; https://doi.org/10.3390/min13081017 - 29 Jul 2023
Cited by 5 | Viewed by 2163
Abstract
The study provides novel insights into the crystal–chemical and optical characteristics of frankamenite. Frankamenite belongs to a special group (canasite group) of the complex alkaline Ca-(K)-(Na) silicates, and it was found in charoitites from the only known location, Murun Massif, Eastern Siberia, Russia. [...] Read more.
The study provides novel insights into the crystal–chemical and optical characteristics of frankamenite. Frankamenite belongs to a special group (canasite group) of the complex alkaline Ca-(K)-(Na) silicates, and it was found in charoitites from the only known location, Murun Massif, Eastern Siberia, Russia. The crystal–chemical, vibrational, and optical properties of frankamenite were investigated by combining electron probe microanalysis (EPMA), single-crystal X-ray diffraction (SCXRD), infrared (IR) absorption, Raman, UV-Visible absorption, and electron spin resonance (ESR) spectroscopy. The behavior of the peaks in the IR spectra was also studied using ab initio calculations. Detailed characteristics of the internal composition and structure of the mineral species were described, and vibrational and optical properties based on these peculiarities were interpreted. The thermally stimulated reorientation of the H2O molecules and OH groups was studied by thermo-Raman spectroscopy. Octahedral cationic positions can be readily doped with transition metal and lanthanide ions that provide a promising opportunity to adjust the Ce3+ luminescence. Hence, frankamenite is a potential material for ion exchange, novel phosphors, and luminophores. Full article
(This article belongs to the Special Issue Vibrational Spectroscopy in Mineralogy and Archaeology)
Show Figures

Graphical abstract

23 pages, 22182 KiB  
Article
Fedorite from Murun Alkaline Complex (Russia): Spectroscopy and Crystal Chemical Features
by Ekaterina V. Kaneva, Roman Yu. Shendrik, Tatiana A. Radomskaya and Ludmila F. Suvorova
Minerals 2020, 10(8), 702; https://doi.org/10.3390/min10080702 - 7 Aug 2020
Cited by 14 | Viewed by 5110
Abstract
Fedorite is a rare phyllosilicate, having a crystal structure characterized by SiO4-tetrahedral double layers located between continuous layers formed by edge-sharing (Ca,Na)-octahedra, and containing interlayer K, Na atoms and H2O molecules. A mineralogical-petrographic and detailed crystal-chemical study of fedorite [...] Read more.
Fedorite is a rare phyllosilicate, having a crystal structure characterized by SiO4-tetrahedral double layers located between continuous layers formed by edge-sharing (Ca,Na)-octahedra, and containing interlayer K, Na atoms and H2O molecules. A mineralogical-petrographic and detailed crystal-chemical study of fedorite specimens from three districts of the Murun alkaline complex was performed. The sequence of the crystallization of minerals in association with fedorite was established. The studied fedorite samples differ in the content of interlayer potassium and water molecules. A comparative analysis based on polyhedral characteristics and deformation parameters was carried out. For the first time, EPR, optical absorption and emission spectra were obtained for fedorite. The raspberry-red coloration of the mineral specimens could be attributed to the presence of Mn4+ ions. Full article
Show Figures

Graphical abstract

21 pages, 4285 KiB  
Article
40Ar/39Ar Geochronology of the Malyy (Little) Murun Massif, Aldan Shield of the Siberian Craton: A Simple Story for an Intricate Igneous Complex
by Alexei V. Ivanov, Nikolay V. Vladykin, Elena I. Demonterova, Viktor A. Gorovoy and Emilia Yu. Dokuchits
Minerals 2018, 8(12), 602; https://doi.org/10.3390/min8120602 - 19 Dec 2018
Cited by 12 | Viewed by 4794
Abstract
The Malyy (Little) Murun massif of the Aldan Shield of the Siberian Craton has long been a kind of Siberian Mecca for geologists. It has attracted thousands of geologists, prospectors, and mineral collectors despite its remote location. It is famous for a dozen [...] Read more.
The Malyy (Little) Murun massif of the Aldan Shield of the Siberian Craton has long been a kind of Siberian Mecca for geologists. It has attracted thousands of geologists, prospectors, and mineral collectors despite its remote location. It is famous for a dozen new and rare minerals, including the gemstones charoite and dianite (the latter is the market name for strontian potassicrichrerite), as well as for a range of uncommon alkaline igneous rocks. Despite this, the age of the Malyy Murun igneous complex and associated metasomatic and hydrothermal mineral associations has remained poorly constrained until now. In this paper, we provide extensive 40Ar/39Ar geochronological data to reveal its age and temporal history. It appears that, although unique in terms of rocks and constituent minerals, the Malyy Murun is just one of multiple alkaline massifs and lavas emplaced in the Early Cretaceous (~137–128 Ma) within a framework of the extensional setting of the Aldan Shield and nearby Transbaikalian region. The extension took place 40–60 million years after the supposed closure of the Mongolia–Okhotsk Ocean and orogenic peak in the Early–Middle Jurassic. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Back to TopTop