40Ar/39Ar Geochronology of the Malyy (Little) Murun Massif, Aldan Shield of the Siberian Craton: A Simple Story for an Intricate Igneous Complex
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Igneous Stages
3.1.1. Early Intrusive Stage
3.1.2. Main Intrusive and Volcanic Stages
3.1.3. Late Intrusive Stage
3.2. Kedroviy Stock
3.3. Charoitite Complex
4. Discussion
4.1. The Timing of the Cretaceous Alkaline Magmatism of the Aldan Shield and Transbaikalia
4.2. The Charoitite Complex
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Rock Name/Intrusive Stage, Complex | Dated Mineral | Preferred 40Ar/39Ar age Value |
---|---|---|
Olivine-pyroxene-phlogopite-monticellite rocks/Early intrusive stage | Phlogopite | 134.26 ± 0.32 Ma (sub-plateau) |
Biotite-pyroxenite/Early intrusive stage | Biotite | 133.14 ± 0.45 Ma (sub-plateau) |
Olivine-lamproites/Early intrusive stage | Biotite | 135.17 ± 0.91 Ma (sub-plateau) |
Biotite-pyroxene-syenite (alkaline syenite)/Main intrusive stage | Biotite | 135.76 ± 0.68 Ma (plateau) |
1 Leucite-lamproite/Volcanic stage | Biotite | 142.66 ± 0.70 Ma (average) |
Lujavrite/Volcanic stage | Biotite | 136.60 ± 0.88 Ma (plateau) |
Calcite-carbonatite/Late intrusive stage | K-feldspar | 129.56 ± 0.76 Ma (plateau) |
Benstonite-carbonatite/Late intrusive stage | K-feldspar Tinaksite | 128.92 ± 0.80 Ma (plateau) 130.93 ± 0.79 Ma (sub-plateau) |
Alkaline granite/Late intrusive stage | Strontian potassicrichterite | 128.5 ± 1.1 Ma (plateau |
Charoitite/Charoitite complex | K-feldspar | 126.8 ± 1.1 Ma (plateau) |
Tokkoite | 135.93 ± 0.49 Ma (plateau) | |
Tokkoite | 135.9 ± 1.4 Ma (isochron) | |
Tinaksite | 135.86 ± 0.43 Ma (plateau) | |
K-arfvedsonite | 133.11 ± 0.34 Ma (plateau) | |
Frankamenite | 137.55 ± 0.46 Ma (sub-plateau) | |
Frankamenite | 135.1 ± 1. 7 Ma (sub-plateau) | |
Frankamenite | 133.95 ± 0.77 Ma (oldest step) | |
Microcline monomineralic rock/Charoitite complex | K-feldspar | 135.79 ± 0.42 Ma (plateau) |
K-feldspar | 129.43 ± 0.87 Ma (sub-plateau) | |
Quartz-feldspar-brookite-vein | K-feldspar | 123.3 ± 0.3 (average) |
References
- Vladykin, N.V. 1ST occurrence of lamproites in the USSR. Doklady Akademii Nauk SSSR 1985, 280, 718–722. [Google Scholar]
- Prokofev, V.Y.; Vorobiov, E.I. P-T conditions of formation of the Sr-Ba carbonatites, chariots, and torgolites of Murunsky alkaline massif (Eastern Siberia). Geochimiya 1991, 10, 1444–1452. [Google Scholar]
- Mitchell, R.H.; Smith, C.B.; Vladykin, N.V. Isotopic composition of strontium and neodymium in potassic rocks of the Little Murun complex, Aldan Shield, Siberia. Lithos 1994, 32, 243–248. [Google Scholar] [CrossRef]
- Panina, L.I. Low-titanium Aldan lamproites (Siberia): Melt inclusions in minerals. Geoloiya i Geofizika 1997, 38, 112–122. [Google Scholar]
- Konev, A.A.; Feoktistov, G.D. Genesis of ultrasilicic alkaline granitoids. Petrology 1998, 6, 62–69. [Google Scholar]
- Panina, L.I.; Usol’tseva, L.M. The role of liquid immiscibility of calcitic carbonatites from the Malyi Murun Massif (Aldan). Geoloiya i Geofizika 2000, 41, 655–670. [Google Scholar]
- Vladykin, N.V. The Malyi Murun volcano-plutonic complex: An example of differentiated mantle magmas of lamproitic type. Geochem. Int. 2000, 38, S73–S83. [Google Scholar]
- Sokolov, S.V.; Sidorenko, G.A.; Chukanov, N.V.; Chistyakova, N.I. On benstonite and benstonite carbonatites. Geochem. Int. 2001, 39, 1218–1229. [Google Scholar]
- Davies, G.R.; Stolz, A.J.; Mahotkin, I.L.; Nowell, G.M.; Pearson, D.G. Trace element and Sr-Pb-Nd-Hf isotope evidence for ancient, fluid-dominated enrichment of the source of Aldan shield lamproites. J. Petrol. 2006, 47, 1119–1146. [Google Scholar] [CrossRef]
- Markl, G.; Marks, M.A.W.; Frost, B.R. On the controls of oxygen fugacity in the generation and crystallization of peralkaline melts. J. Petrol. 2010, 51, 1831–1847. [Google Scholar] [CrossRef]
- Reguir, E.P.; Chakhmouradian, A.R.; Pisiak, L.; Halden, N.M.; Yang, P.; Xu, C.; Kynicky, J.; Coueslan, C.G. Trace-element composition and zoning in clinopyroxene- and amphibole-group minerals: Implications for element partitioning and evolution of carbonatites. Lithos 2012, 128, 27–45. [Google Scholar] [CrossRef]
- Vorob’ev, E.I. Strontium-barium carbonatites of the Murun massif (Eastern Siberia, Russia). Geol. Ore Depos. 2001, 43, 468–480. [Google Scholar]
- Vladykin, N.V.; Tsaruk, I.I. Geology, chemistry, and genesis of Ba-Sr-bearing (“benstonite”) carbonatites of the Murun Massif. Geoloiya i Geofizika 2003, 44, 325–339. [Google Scholar]
- Vladykin, N.V.; Viladkar, S.G.; Miyazaki, T.; Mohar, V.R. Geochemistry of benstonite and associated carbonatites of Sevathur, Jogipatti and Samalpatti, Tamil Nadu, South India and Murun Massif, Siberia. J. Geol. Soc. India 2008, 72, 312–324. [Google Scholar]
- Vladykin, N.V. Potassium alkaline lamproite-carbonatite complexes: Petrology, genesis, and ore reserves. Russ. Geol. Geophys. 2009, 50, 1119–1128. [Google Scholar] [CrossRef]
- Vladykin, N.V. Genesis and crystallization of ultramafic alkaline carbonatite magmas of Siberia: Ore potential, mantle sources, and relationship with plume activity. Russ. Geol. Geophys. 2016, 57, 698–712. [Google Scholar] [CrossRef]
- Borisenko, A.S.; Borovikov, A.A.; Vasyukova, E.A.; Pavlova, G.G.; Ragozin, A.L.; Prokop’ev, I.R.; Vladykin, N.V. Oxidized magmatogene fluids: Metal-bearing capacity and role of ore formation. Russ. Geol. Geophys. 2011, 52, 144–164. [Google Scholar] [CrossRef]
- Makar’ev, L.B.; Mironov, Y.B.; Kukharenko, E.A.; Sharpenok, L.N. Breccias formation in Mesozoic ultrapotassic alkaline rocks of the Murunsky magmatic cluster (Northern Transbaikal). Reg. Geol. Met. 2016, 66, 45–52. [Google Scholar]
- Borovikov, A.A.; Vladykin, N.V.; Tretiakova, I.G.; Dokuchits, E.Y. Physicochemical conditions of formation of hydrothermal mineralization on the Murunskiy alkaline massif, western Aldan (Russia). Ore Geol. Rev. 2018, 95, 1066–1075. [Google Scholar] [CrossRef]
- Rogova, V.P.; Rogov, Y.G.; Drits, V.A.; Kuznetsova, N.I. Charoite—A new mineral and new jewelry-stone. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 1978, 1, 94–100. [Google Scholar] [CrossRef]
- Konev, A.A.; Vorobyev, E.I.; Lazebnik, K.A. Mineralogy of the Murun Alkaline Massif; NITS OIGGIM: Novosibirsk, Russia, 1996; pp. 1–221. ISBN 5-7692-0006-5. [Google Scholar]
- Vorobyev, E.I. Charoite; Academic Publisher “GEO”: Novosibirsk, Russia, 2008; pp. 1–140. ISBN 978-5-9747-0116-0. [Google Scholar]
- Shevelev, A.S. (Ed.) Charoite. Violet marvel of Siberia, 2nd ed.; Petrographica: Irkutsk, Russia, 2013; pp. 1–191. ISBN 978-5-4337-0013-0. [Google Scholar]
- Shevelev, A.S. Baikalian Gemstones. An Illustrated Science-Popular Publication; Petrographica: Irkutsk, Russia, 2017; pp. 1–176. ISBN 978-5-9908900-6-0. [Google Scholar]
- Rozhdestvenskaya, I.; Mugnaioli, E.; Czank, M.; Depmeier, W.; Kolb, U.; Reinholdt, A.; Weirich, T. The structure of charoite, (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0*nH2O, solved by conventional and automated electron diffraction. Mineral. Mag. 2010, 74, 159–177. [Google Scholar] [CrossRef]
- Rogov, Y.G.; Rogova, V.P.; Voronkov, A.A.; Moleva, V.A. Tinaksite NaK2Ca2TiSi7O19(OH)—A new mineral. Doklady Akademii Nauk SSSR 1965, 162, 658–661. [Google Scholar]
- Lacalamita, M.; Mesto, E.; Kaneva, E.; Scordari, F.; Pedrazzi, G.; Vladykin, N.; Schingaro, E. Structure refinement and crystal chemistry of tokkoite and tinaksite from the Murun massif (Russia). Mineral. Mag. 2017, 81, 251–272. [Google Scholar] [CrossRef]
- Lazebnik, K.A.; Nikishova, L.V.; Lazebnik, Y.D. Tokkoite a new mineral of charoitites. Mineralogicheskii Zhurnal 1986, 8, 85–89. [Google Scholar]
- Nikishova, L.V.; Lazebnik, K.A.; Rozhdestvenskaya, I.V.; Emel’yanova, N.N.; Lazebnik, Y.D. Frankamenite K2Na3Ca5(Si12O30)F3(OH)H2O—A new mineral, triclinic variety of canasite from charoitites. Zapiski Vsesoyuznogo Mineralogicheskogo Obschestva 1996, CXXV, 106–108. [Google Scholar]
- Rozhdestvenskaya, I.V.; Nikishova, L.V.; Lazebnik, K.A. The crystal structure of frankamenite. Mineral. Mag. 1996, 60, 897–905. [Google Scholar] [CrossRef]
- Konev, A.A.; Paradina, L.F.; Vorob’ev, E.I.; Malyshonok, Y.V.; Lapides, I.L.; Uschapovskaya, Z.F. Magnesiumstrontian poassicricterite—A new variety of amphiboles. Mineralogicheskii Zhurnal 1988, 10, 76–82. [Google Scholar]
- Sokolova, E.V.; Kabalov, Y.K.; McCammon, C.; Schneider, J.; Konev, A.A. Cation partitioning in an unusual strontian potassicrichterite from Siberia: Rietveld structure refinement and Mossbauer spectroscopy. Mineral. Mag. 2000, 64, 19–23. [Google Scholar] [CrossRef]
- Afonina, G.G.; Sapozhnikov, A.N.; Vorobiev, E.I.; Konev, A.A.; Maishonok, I.V. The X-ray characteristics of tausonite, a new mineral of perovskite group. Acta Cristal. Sect. A 1984, 40, C249. [Google Scholar] [CrossRef]
- Mitchell, R.H.; Vladykin, N.V. Rare-earth element-bearing tausonite and potassium barium titanites from the Little Murun potassic alkaline complex, Yakutia, Russia. Mineral. Mag. 1993, 57, 651–664. [Google Scholar] [CrossRef]
- Dobrovol’skaya, M.G.; Tsepin, A.I.; Evstigneeva, T.L. Murunskite K2Cu3FeS4—A new sulfide of potassium, cuprum and iron. Zapiski Vsesoyuznogo Mineralogicheskogo Obschestva 1981, 4, 468–473. [Google Scholar]
- Pekov, I.V.; Zubkova, N.V.; Lisitsyn, D.V.; Pushcharovsky, D.Y. Crystal chemistry of murunskite. Doklady Earth Sci. 2009, 424, 139–141. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Cooper, M.A.; Ball, N.; Reguir, E.P.; Medici, L.; Abdu, Y.A.; Antonov, A.A. Vladykinite, Na3Sr4(Fe2+Fe3+)Si8O24: A new complex sheet silicate from peralkaline rocks of the Murun complex, eastern Siberia, Russia. Am. Mineral. 2014, 99, 235–241. [Google Scholar] [CrossRef]
- Kostyuk, V.P.; Panina, L.I.; Zhidkov, A.Y.; Orlova, M.P.; Bazarova, T.Y. Potassic Alkaline Magmatism of the Baikal-Stanovoy Rifting System; Nauka: Novosibirsk, Russia, 1990; pp. 1–238. ISBN 5-02-028819-5. [Google Scholar]
- Wang, Y.; He, H.-Y.; Ivanov, A.V.; Zhu, R.-X.; Lo, C.-H. Age and origin of charoitite, Malyy Murun massif, Siberia, Russia. Int. Geol. Rev. 2014, 56, 1007–1019. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Gorovoy, V.A.; Gladkochub, D.P.; Shevelev, A.S.; Vladykin, N.V. The first precise data on the age of charoite mineralization (Eastern Siberia, Russia). Doklady Earth Sci. 2018, 478, 179–182. [Google Scholar] [CrossRef]
- Donskaya, T.V.; Gladkochub, D.P.; Mazukabzov, A.M.; Ivanov, A.V. Late Paleozoic-Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean. J. Asian Earth Sci. 2013, 62, 79–97. [Google Scholar] [CrossRef]
- Demonterova, E.I.; Ivanov, A.V.; Mikheeva, E.M.; Arzhannikova, A.V.; Frolov, A.O.; Arzhannikov, S.G.; Bryanskiy, N.V.; Pavlova, L.A. Early to Middle Jurassic history of the southern Siberian continent (Transbaikalia) recorded in sediments of the Siberian Craton: Sm-Nd and U-Pb provenance study. Bull. Soc. Geol. Fr. 2017, 188. [Google Scholar] [CrossRef]
- Stupak, F.M.; Travin, A.V. The age of Late Mesozoic volcanogenic rocks of northern Transbaikalia (40Ar/39Ar data). Geol. Geofiz. 2004, 45, 280–284. [Google Scholar]
- Ripp, G.S.; Izbrodin, I.A.; Doroshkevich, A.G.; Lastochkin, E.I.; Rampilov, M.O.; Sergeev, S.A.; Travin, A.V.; Posokhov, V.F. Chronology of the formation of the gabbro-syenite-granite series of the Oshurkovo pluton, western Transbaikalia. Petrology 2013, 21, 375–392. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Demonterova, E.I.; He, H.-Y.; Perepelov, A.V.; Travin, A.V.; Lebedev, V.A. Volcanism in the Baikal rift: 40 years of active-versus-passive model discussion. Earth-Sci. Rev. 2015, 148, 18–43. [Google Scholar] [CrossRef]
- Dash, B.; Yin, A.; Jiang, N.; Tseveendorj, B.; Han, B. Petrology, structural setting, timing, and geochemistry of Cretaceaous volcanic rocks in eastern Mongolia: Constraints on their tectonic origin. Gondwana Res. 2015, 27, 281–299. [Google Scholar] [CrossRef]
- Ivanov, V.G.; Yarmolyuk, V.V.; Smirnov, V.N. New data on the age of volcanism evidence in the West-Zabaikalian Late Mesozoic-Cenozoic volcanic domain. Doklady Akademii Nauk 1995, 345, 648–652. [Google Scholar]
- Stupak, F.M.; Kudryashova, E.A.; Lebedev, V.A.; Gol’tsman, Y.V. The structure, composition, and conditions of generation for the Early Cretaceous Mongolia-East-Transbaikalia volcanic belt: The Durulgui-Torei area (southern Transbaikalia, Russia). J. Volcanol. Seismol. 2018, 12, 34–46. [Google Scholar] [CrossRef]
- Ponomarchuk, A.V.; Prokopyev, I.R.; Svetlitskaya, T.V.; Doroshkevich, A.G. 40Ar/39Ar geochronology of Inagly alkaline rocks (Aldan shield, South Yakutia). Russ. Geol. Geophys. 2019, in press. [Google Scholar]
- Shatova, N.V.; Skublov, S.G.; Melnik, A.E.; Shatov, V.V.; Molchanov, A.V.; Terekhov, A.V.; Sergeev, S.A. Geochronology of alkaline magmatic rocks and metasomatites of the Ryabinovy stock (South Yakita) based on zircon isotopic and geochemical (U-Pb, REE) investigations. Reg. Geol. Met. 2017, 69, 33–48. [Google Scholar]
- Polin, V.F.; Glebovitskii, V.A.; Mitsuk, V.V.; Kiselev, V.I.; Budnitskiy, S.Y.; Travin, A.V.; Rizvanov, N.G.; Barinov, N.N.; Ekimova, N.I.; Ponomarchuk, A.V. Two-stage formation of the Alkaline volcano-plutonic complexes in the Ketkap-Yuna igneous province of the Aldan Shield: New isotopic data. Doklady Earth Sci. 2014, 459, 1322–1327. [Google Scholar] [CrossRef]
- Prokoyev, I.R.; Kravchenko, A.A.; Ivanov, A.I.; Borisenko, A.S.; Ponomarchuk, A.V.; Zaitsev, A.I.; Kardash, E.A.; Rozhkov, A.A. Geochronology and ore mineralization of the Dzheltula alkaline massif (Aldan Shield, South Yakutia). Russ. J. Pac. Geol. 2018, 12, 34–45. [Google Scholar] [CrossRef]
- Buchko, I.V.; Sorokin, A.A.; Ponomarchuk, V.A.; Kotov, A.B.; Travin, A.V.; Kovach, V.P. Trachyandesites of the Mogot volcanic field (Stanovoi volcanoplutonic belt, East Siberia): Age, geochemical features, and sources. Russ. Geol. Geophys. 2016, 57, 1389–1397. [Google Scholar] [CrossRef]
- Kiselev, A.I.; Yarmolyuk, V.V.; Ivanov, A.V.; Egorov, K.N. Middle Paleozoic basaltic and kimberlitic magmatism in the northwestern shoulder of the Vilyui Rift, Siberia: Relations in space and time. Russ. Geol. Geophys. 2014, 55, 144–152. [Google Scholar] [CrossRef]
- Steiger, R.H.; Jager, E. Subcommission on geochronology—Convention on use of decay constants in geochronology and cosmochronology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Marti, K.; Severinghaus, J.P.; Kawamura, K.; Yoo, H.-S.; Lee, J.B.; Kim, J.S. A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta 2006, 70, 4507–4512. [Google Scholar] [CrossRef]
- Min, K.W.; Mundil, R.; Renne, P.R.; Ludwig, K.R. A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1 Ga rhyoline. Geochim. Cosmochim. Acta 2000, 64, 73–98. [Google Scholar] [CrossRef]
- Ivanov, A.V. Systematic differences between U-Pb and 40Ar/39Ar dates: Reasons and evaluation techniques. Geochem. Int. 2006, 44, 1041–1047. [Google Scholar] [CrossRef]
- Renne, P.R.; Mundil, R.; Balco, G.; Min, K.; Ludwig, K.R. Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim. Cosmochim. Acta 2010, 74, 5349–5367. [Google Scholar] [CrossRef]
- Ivanov, A.V.; Demonterova, E.I.; Savatenkov, V.M.; Perepelov, A.B.; Ryabov, V.V.; Shevko, A.Y. Late Triassic (Carnian) lamproites from Noril’sk, polar Siberia: Evidence for melting of the recycled Archean crust and the question of lamproite source for some placer diamond deposits of the Siberian Craton. Lithos 2018, 296, 67–78. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot 3.75. A geochronological toolkit for Microsoft Excel. Berkeley Geochronol. Center Spec. Publ. 2012, 5, 1–75. [Google Scholar]
- Charoite. Available online: https://www.mindat.org/min-972.html (accessed on 14 November 2018).
- Lentz, D.R. Carbonaite genesis: A reexamination of the role of intrusion-related pneumatolytic skarn processes in limestone melting. Geology 1999, 27, 335–338. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, A.V.; Vladykin, N.V.; Demonterova, E.I.; Gorovoy, V.A.; Dokuchits, E.Y. 40Ar/39Ar Geochronology of the Malyy (Little) Murun Massif, Aldan Shield of the Siberian Craton: A Simple Story for an Intricate Igneous Complex. Minerals 2018, 8, 602. https://doi.org/10.3390/min8120602
Ivanov AV, Vladykin NV, Demonterova EI, Gorovoy VA, Dokuchits EY. 40Ar/39Ar Geochronology of the Malyy (Little) Murun Massif, Aldan Shield of the Siberian Craton: A Simple Story for an Intricate Igneous Complex. Minerals. 2018; 8(12):602. https://doi.org/10.3390/min8120602
Chicago/Turabian StyleIvanov, Alexei V., Nikolay V. Vladykin, Elena I. Demonterova, Viktor A. Gorovoy, and Emilia Yu. Dokuchits. 2018. "40Ar/39Ar Geochronology of the Malyy (Little) Murun Massif, Aldan Shield of the Siberian Craton: A Simple Story for an Intricate Igneous Complex" Minerals 8, no. 12: 602. https://doi.org/10.3390/min8120602