Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Mueller matrix imaging polarimeter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7029 KiB  
Article
Creep Monitoring of Submersible Observation Windows Using Mueller Matrix Imaging
by Haibo Tu, Xingying Bu, Ran Liao, Hailong Zhang, Guoliang Ma, Hening Li, Jiachen Wan and Hui Ma
Materials 2023, 16(13), 4733; https://doi.org/10.3390/ma16134733 - 30 Jun 2023
Cited by 1 | Viewed by 1484
Abstract
Safety of the observation window is one of the core concerns for manned submersibles. When subjected to underwater static pressure, extrusion and creep deformation always occur in the observation window, which can pose a threat to both safety and optical performance. To assess [...] Read more.
Safety of the observation window is one of the core concerns for manned submersibles. When subjected to underwater static pressure, extrusion and creep deformation always occur in the observation window, which can pose a threat to both safety and optical performance. To assess the deformation, real-time and non-contact monitoring methods are necessary. In this study, a conceptual setup based on the waveplate rotation and dual-DoFP (division of focal-plane polarimeter) polarization camera is built for the observation window’s creep monitoring by measuring the Mueller matrix images of the samples under different pressures and durations. Then, a series of characteristic parameters, such as t1, R, r, R′, are extracted from the Muller matrix images by Mueller matrix transformation (MMT), Mueller matrix polar decomposition (MMPD), correlation analysis and phase unwrapping method. The results demonstrate that these parameters can effectively describe the observation window’s creep at different pressure levels which are simulated by finite element analysis. Additionally, more characterization parameters, such as ψ, A and D, are given from the Mueller matrix images and discussed to illustrate the method’s potential for further applications and investigations. Ultimately, future devices based on this method could serve as a valuable tool for real-time and non-contact creep monitoring of the submersible observation windows. Full article
Show Figures

Graphical abstract

21 pages, 10682 KiB  
Article
Distinguishing Malignant Melanoma and Benign Nevus of Human Skin by Retardance Using Mueller Matrix Imaging Polarimeter
by Wen’ai Wang, Guoqiang Chen and Yanqiu Li
Appl. Sci. 2023, 13(11), 6514; https://doi.org/10.3390/app13116514 - 26 May 2023
Cited by 5 | Viewed by 2287
Abstract
Malignant melanoma is considered the most serious type of skin cancer. In clinical practice, the conventional technique based on subjective visual examination has a high rate of misdiagnosis for malignant melanoma and benign nevus. Polarization imaging techniques have great potential in clinical diagnosis [...] Read more.
Malignant melanoma is considered the most serious type of skin cancer. In clinical practice, the conventional technique based on subjective visual examination has a high rate of misdiagnosis for malignant melanoma and benign nevus. Polarization imaging techniques have great potential in clinical diagnosis due to the advantages of improving sensitivity to functional structures, such as microfiber. In this paper, a set of human skin tissue sections, including 853 normal, 851 benign nevus, and 874 malignant melanoma, were analyzed and differentiated using a homemade high-fidelity Mueller matrix imaging polarimeter. The quantitative result using support vector machine algorithms confirmed that, while scalar retardance yields lower accuracy rates, vectorial retardance results in greater accuracy for both the training and testing sets. In particular, the cross-validation accuracy for the training set increased from 88.33% to 98.60%, and the prediction accuracy for the testing set increased from 87.92% to 96.19%. This tackles the limitation of the examination based on clinical experience and suggests that vectorial retardance can provide more accurate diagnostic evidence than scalar retardance. Unfortunately, it is inconvenient and time-consuming to read and analyze each component of the vectorial retardance simultaneously in the qualitative assessment. To address this clinical challenge, a color-encoded vectorial retardance imaging method was implemented. This method can provide superior tissue-specific contrast and more fiber details than scalar retardance. The anisotropic microfiber variation among different skin lesions, including the orientation and distribution, can be clearly highlighted. We believe that this work will not only enable early and rapid diagnosis of skin cancer but also provide a good observation and analysis of the state of cancer progression. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

18 pages, 7751 KiB  
Article
Are Indices of Polarimetric Purity Excellent Metrics for Object Identification in Scattering Media?
by Xiaobo Li, Liping Zhang, Pengfei Qi, Zhiwei Zhu, Jianuo Xu, Tiegen Liu, Jingsheng Zhai and Haofeng Hu
Remote Sens. 2022, 14(17), 4148; https://doi.org/10.3390/rs14174148 - 24 Aug 2022
Cited by 19 | Viewed by 2484
Abstract
Polarization characteristics are significantly crucial for tasks in various fields, including the remote sensing of oceans and atmosphere, as well as the polarization LIDAR and polarimetric imaging in scattering media. Many polarimetric metrics (such as the degree of polarization, polarization angle diattenuation, and [...] Read more.
Polarization characteristics are significantly crucial for tasks in various fields, including the remote sensing of oceans and atmosphere, as well as the polarization LIDAR and polarimetric imaging in scattering media. Many polarimetric metrics (such as the degree of polarization, polarization angle diattenuation, and depolarization) have been proposed to enrich the characterization and improve the task performance in scattering media; yet, their related efficacy is limited, especially in high turbidity conditions. The indices of polarimetric purity (IPPs), including three different depolarization metrics, have been successfully applied to biomedical diagnosis. However, it is still debatable whether IPPs also are excellent metrics for identifying or distinguishing objects in scattering media. In this work, we seek to provide physical insights into the application of distinguishing and identifying different objects via IPPs. Imaging experiments are devised and performed on different objects, e.g., metals and plastics, under different turbidity levels, demonstrating the superiority of IPPs as excellent metrics for object identification in scattering conditions. The experimental results show that the IPPs images can enhance image contrast and improve discriminability, as well as break the limitation of traditional intensity-model imaging techniques when further combined with dehazing or enhancing algorithms. Importantly, as the used Mueller matrix (MM) and the related IPPs can also be obtained via other types of MM polarimeters (e.g., PolSAR and MM microscopy), the proposed solution and idea have potential for such applications as biomedical imaging, photogrammetry, and remote sensing. Full article
(This article belongs to the Special Issue Advanced Light Vector Field Remote Sensing)
Show Figures

Graphical abstract

17 pages, 3294 KiB  
Article
Polarization Aberrations in High-Numerical-Aperture Lens Systems and Their Effects on Vectorial-Information Sensing
by Yuanxing Shen, Binguo Chen, Chao He, Honghui He, Jun Guo, Jian Wu, Daniel S. Elson and Hui Ma
Remote Sens. 2022, 14(8), 1932; https://doi.org/10.3390/rs14081932 - 16 Apr 2022
Cited by 17 | Viewed by 4922
Abstract
The importance of polarization aberrations has been recognized and studied in numerous optical systems and related applications. It is known that polarization aberrations are particularly crucial in certain photogrammetry and microscopy techniques that are related to vectorial information—such as polarization imaging, stimulated emission [...] Read more.
The importance of polarization aberrations has been recognized and studied in numerous optical systems and related applications. It is known that polarization aberrations are particularly crucial in certain photogrammetry and microscopy techniques that are related to vectorial information—such as polarization imaging, stimulated emission depletion microscopy, and structured illumination microscopy. Hence, a reduction in polarization aberrations would be beneficial to different types of optical imaging/sensing techniques with enhanced vectorial information. In this work, we first analyzed the intrinsic polarization aberrations induced by a high-NA lens theoretically and experimentally. The aberrations of depolarization, diattenuation, and linear retardance were studied in detail using the Mueller matrix polar-decomposition method. Based on an analysis of the results, we proposed strategies to compensate the polarization aberrations induced by high-NA lenses for hardware-based solutions. The preliminary imaging results obtained using a Mueller matrix polarimeter equipped with multiple coated aspheric lenses for polarization-aberration reduction confirmed that the conclusions and strategies proposed in this study had the potential to provide more precise polarization information of the targets for applications spanning across classical optics, remote sensing, biomedical imaging, photogrammetry, and vectorial optical-information extraction. Full article
(This article belongs to the Special Issue Advanced Light Vector Field Remote Sensing)
Show Figures

Figure 1

14 pages, 5933 KiB  
Article
Stokes Dynamic Polarimeter for Non-Organic and Organic Samples Characterization
by Dora-Luz Almanza-Ojeda, Daniela Rodriguez-Sotelo, Rogelio Castro-Sanchez, Rene Martinez-Celorio and Mario-Alberto Ibarra-Manzano
Sensors 2022, 22(6), 2155; https://doi.org/10.3390/s22062155 - 10 Mar 2022
Cited by 2 | Viewed by 2809
Abstract
The light polarization properties provide relevant information about linear–optical media quality and condition. The Stokes–Mueller formalism is commonly used to represent the polarization properties of the incident light over sample tests. Currently, different Stokes Polarimeters are mainly defined by resolution, acquisition rate, and [...] Read more.
The light polarization properties provide relevant information about linear–optical media quality and condition. The Stokes–Mueller formalism is commonly used to represent the polarization properties of the incident light over sample tests. Currently, different Stokes Polarimeters are mainly defined by resolution, acquisition rate, and light to carry out accurate and fast measurements. This work presents the implementation of an automatic Stokes dynamic polarimeter to characterize non-biological and biological material samples. The proposed system is configured to work in the He-Ne laser beam’s reflection or transmission mode to calculate the Mueller matrix. The instrumentation stage includes two asynchronous photoelastic modulators, two nano-stepper motors, and an acquisition data card at 2% of accuracy. The Mueller matrix is numerically calculated by software using the 36 measures method without requiring image processing. Experiments show the efficiency of the proposed optical array to calculate the Mueller matrix in reflection and transmission mode for different samples. The mean squared error is calculated for each element of the obtained matrix using referenced values of the air and a mirror. A comparison with similar works in the literature validates the proposed optical array. Full article
(This article belongs to the Special Issue Optical Sensors Technology and Applications)
Show Figures

Figure 1

17 pages, 6895 KiB  
Article
Mueller Matrix Polarimetric Imaging Analysis of Optical Components for the Generation of Cylindrical Vector Beams
by Guadalupe López-Morales, María del Mar Sánchez-López, Ángel Lizana, Ignacio Moreno and Juan Campos
Crystals 2020, 10(12), 1155; https://doi.org/10.3390/cryst10121155 - 18 Dec 2020
Cited by 17 | Viewed by 5256
Abstract
In this work, we performed a Mueller matrix imaging analysis of two commercial optical components usually employed to generate and manipulate vector beams—a radial polarizer and a liquid-crystal q-plate. These two elements generate vector beams by different polarization mechanisms—polarizance and retardance, respectively. [...] Read more.
In this work, we performed a Mueller matrix imaging analysis of two commercial optical components usually employed to generate and manipulate vector beams—a radial polarizer and a liquid-crystal q-plate. These two elements generate vector beams by different polarization mechanisms—polarizance and retardance, respectively. The quality of the vector beams relies on the quality of the device that generates them. Therefore, it is of interest to apply the well-established polarimetric imaging techniques to evaluate these optical components by identifying their spatial homogeneity in diattenuation, polarizance, depolarization, and retardance, as well as the spatial variation of the angles of polarizance and retardance vectors. For this purpose, we applied a customized imaging Mueller matrix polarimeter based on liquid-crystal retarders and a polarization camera. Experimental results were compared to the numerical simulations, considering the theoretical Mueller matrix. This kind of polarimetric characterization could be very helpful to the manufacturers and users of these devices. Full article
(This article belongs to the Special Issue Patterned-Liquid-Crystal for Novel Displays)
Show Figures

Figure 1

16 pages, 3922 KiB  
Article
Error Analysis and Calibration Improvement of the Imaging Section in a Mueller Matrix Microscope
by Jiewei Yu, Xuemin Cheng and Maolin Li
Appl. Sci. 2020, 10(13), 4422; https://doi.org/10.3390/app10134422 - 27 Jun 2020
Cited by 3 | Viewed by 2940
Abstract
Currently, there are various calibration methods available to reduce the errors caused by the polarizing section of a dual-rotating-retarder polarimeter. Although these methods have high measurement accuracy, their robustness must be improved and the influence of the imaging section needs be discussed when [...] Read more.
Currently, there are various calibration methods available to reduce the errors caused by the polarizing section of a dual-rotating-retarder polarimeter. Although these methods have high measurement accuracy, their robustness must be improved and the influence of the imaging section needs be discussed when they are applied in Mueller matrix microscopes. In this paper, a method of error source analysis and element calibration for the Mueller matrix microscope is proposed by using error transform coefficient matrices to account for the polarizing effect of the imaging section. Using Taylor expansion, an approximate linear relationship is established between the sources of errors and the Mueller matrix elements of the measured sample. From this relationship, error magnification coefficient matrices are calculated to determine the specific parameter errors in both the polarizing and imaging sections. Furthermore, elements in the fourth row or column of the error magnification coefficient matrix are especially important for the imaging section. The measurement and simulation results for an air sample and a quarter-wave plate sample as the standard samples, as well as a Daphnia organism sample with complex internal structure, are investigated and discussed. Furthermore, the comparison results reveal the effect of the imaging section on the birefringence characteristics of the Mueller matrix. With the proposed method, the maximum error can be reduced to be less than 0.01 for all the matrix elements and for the amplitude parameter of birefringence, even when the two system parameters a 2 and a 3 of the rotating mechanical part deviate from the default. Full article
Show Figures

Figure 1

Back to TopTop