Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Miniterm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 809 KiB  
Article
I3oT (Industrializable Industrial Internet of Things) Tool for Continuous Improvement in Production Line Efficiency by Means of Sub-Bottleneck Detection Method
by Javier Llopis, Antonio Lacasa, Nicolás Montés and Eduardo Garcia
Machines 2024, 12(11), 760; https://doi.org/10.3390/machines12110760 - 29 Oct 2024
Cited by 1 | Viewed by 1002
Abstract
The present paper shows how to develop an I3oT (Industrializable Industrial Internet of Things) tool for continuous improvement in production line efficiency by means of the sub-bottleneck detection method. There is a large amount of scientific literature related to the detection of bottlenecks [...] Read more.
The present paper shows how to develop an I3oT (Industrializable Industrial Internet of Things) tool for continuous improvement in production line efficiency by means of the sub-bottleneck detection method. There is a large amount of scientific literature related to the detection of bottlenecks in production lines. However, there is no scientific literature that develops tools to improve production lines based on the bottlenecks that go beyond rebalancing tasks. This article explores the concept of a sub-bottleneck. In order to detect sub-bottlenecks in a massive way, the use of one of the I3oT (Industrializable Industrial Internet of Things) tools developed in our previous work, the mini-terms, is proposed. These mini-terms use the existing sensors for the normal operation of the production lines to measure the sub-cycle times and use them to predict the deterioration of the machine components found in the production lines. The sub-bottleneck algorithms proposed are used in two real twin lines at the Ford manufacturing plant in Almussafes (Valencia), the (3LH) and (3RH), to show how the lines can be continuously improved by means of sub-bottleneck detection. Full article
Show Figures

Figure 1

15 pages, 1451 KiB  
Article
Miniterm, a Novel Virtual Sensor for Predictive Maintenance for the Industry 4.0 Era
by Eduardo Garcia, Nicolás Montés, Javier Llopis and Antonio Lacasa
Sensors 2022, 22(16), 6222; https://doi.org/10.3390/s22166222 - 19 Aug 2022
Cited by 21 | Viewed by 3554
Abstract
This article introduces a novel virtual sensor for predictive maintenance called mini-term. A mini-term can be defined as the time it takes for a part of the machine to do its job. Being a technical sub-cycle time, its function has been linked to [...] Read more.
This article introduces a novel virtual sensor for predictive maintenance called mini-term. A mini-term can be defined as the time it takes for a part of the machine to do its job. Being a technical sub-cycle time, its function has been linked to production. However, when a machine or component gets deteriorated, the mini-term also suffers deterioration, allowing it to be a multifunctional indicator for the prediction of machine failures as well as measurement of production. Currently, in Industry 4.0, one of the handicaps is Big Data and Data Analysis. However, in the case of predictive maintenance, the need to install sensors in the machines means that when the proposed scientific solutions reach the industry, they cannot be carried out massively due to the high cost this entails. The advantage introduced by the mini-term is that it can be implemented in an easy and simple way in pre-installed systems since you only need to program a timer in the PLC or PC that controls the line/machine in the production line, allowing, according to the authors’ knowledge, to build industrial Big Data on predictive maintenance for the first time, which is called Miniterm 4.0. This article shows evidence of the important improvements generated by the use of Miniterm 4.0 in a factory. At the end of the paper we show the evolution of TAV (Technical availability), Mean Time To Repair (MTTR), EM (Number of Work order (Emergency Orders/line Stop)) and OM (Labour hours in EM) showing a very important improvement as the number of mini-terms was increased and the Miniterm 4.0 system became more reliable. In particular, TAV is increased by 15%, OM is reduced in 5000 orders, MTTR is reduced in 2 h and there are produced 3000 orders less than when mini-terms did not exist. At the end of the article we discuss the benefits and limitations of the mini-terms and we show the conclusions and future works. Full article
(This article belongs to the Special Issue Machine Health Monitoring and Fault Diagnosis Techniques)
Show Figures

Figure 1

22 pages, 3938 KiB  
Article
Manufacturing Maps, a Novel Tool for Smart Factory Management Based on Petri Nets and Big Data Mini-Terms
by Javier Llopis, Antonio Lacasa, Eduardo Garcia, Nicolás Montés, Lucía Hilario, Judith Vizcaíno, Cristina Vilar, Judit Vilar, Laura Sánchez and Juan Carlos Latorre
Mathematics 2022, 10(14), 2398; https://doi.org/10.3390/math10142398 - 8 Jul 2022
Cited by 7 | Viewed by 3563
Abstract
This article defines a new concept for real-time factory management—manufacturing maps. Manufacturing maps are generated from two fundamental elements, mini-terms and Petri nets. Mini-terms are sub-times of a technical cycle, the time it takes for any component to perform its task. A mini-term, [...] Read more.
This article defines a new concept for real-time factory management—manufacturing maps. Manufacturing maps are generated from two fundamental elements, mini-terms and Petri nets. Mini-terms are sub-times of a technical cycle, the time it takes for any component to perform its task. A mini-term, by definition, is a sub-cycle time and it would only make sense to use the term in connection with production improvement. Previous studies have shown that when the sub-cycle time worsens, this indicates that something unusual is happening, enabling anticipation of line failures. As a result, a mini-term has dual functionality, since, on the one hand, it is a production parameter and, on the other, it is a sensor used for predictive maintenance. This, combined with how easy and cheap it is to extract relevant data from manufacturing lines, has resulted in the mini-term becoming a new paradigm for predictive maintenance, and, indirectly, for production analysis. Applying this parameter using big data for machines and components can enable the complete modeling of a factory using Petri nets. This article presents manufacturing maps as a hierarchical construction of Petri nets in which the lowest level network is a temporary Petri net based on mini-terms, and in which the highest level is a global view of the entire plant. The user of a manufacturing map can select intermediate levels, such as a specific production line, and perform analysis or simulation using real-time data from the mini-term database. As an example, this paper examines the modeling of the 8XY line, a multi-model welding line at the Ford factory in Almussafes (Valencia), where the lower layers are modeled until the mini-term layer is reached. The results, and a discussion of the possible applications of manufacturing maps in industry, are provided at the end of this article. Full article
(This article belongs to the Special Issue Industrial Big Data and Process Modelling for Smart Manufacturing)
Show Figures

Figure 1

13 pages, 2938 KiB  
Article
Real-Time Idle Time Cancellation by Means of Miniterm 4.0
by Eduardo Garcia and Nicolás Montés
Energies 2019, 12(7), 1230; https://doi.org/10.3390/en12071230 - 30 Mar 2019
Cited by 6 | Viewed by 3480
Abstract
The paper presents how single-model robotized manufacturing lines are rebalanced to save energy. The key idea is to eliminate idle time that each robot has by means of adjusting the velocity. To do so, the proposed technique predicts the idle time for the [...] Read more.
The paper presents how single-model robotized manufacturing lines are rebalanced to save energy. The key idea is to eliminate idle time that each robot has by means of adjusting the velocity. To do so, the proposed technique predicts the idle time for the next cycle time based on miniterm 4.0. This system measures in real-time the sub-cycle times (mini-terms) with the goal to detect disturbances that predict future machine failures. Mini-terms are used to compute the idle time and the allowed velocity reduction for the Industrial Robot without losing productivity. The proposed predictive control technique has been tested in a real production line located at Ford Almussafes plant (Valencia). The line has six stations where each one has an industrial robot. It is connected to miniterm 4.0 to perform a real test. A discussion, limitations of the technique, future implementations and conclusions are shown at the end of this paper. Full article
(This article belongs to the Special Issue Smart Management Energy Systems in Industry 4.0)
Show Figures

Figure 1

Back to TopTop