Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Mimusops elengi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2179 KiB  
Article
The Influence of Pyrolysis Time and Temperature on the Composition and Properties of Bio-Oil Prepared from Tanjong Leaves (Mimusops elengi)
by Leni Maulinda, Husni Husin, Nasrul Arahman, Cut Meurah Rosnelly, Muhammad Syukri, Nurhazanah, Fahrizal Nasution and Ahmadi
Sustainability 2023, 15(18), 13851; https://doi.org/10.3390/su151813851 - 18 Sep 2023
Cited by 12 | Viewed by 5070
Abstract
This research aims to evaluate the influence of pyrolysis time and temperature on the composition and properties of bio-oil derived from Mimusops elengi. Experiments were conducted by varying the pyrolysis temperature and time from 400 to 600 °C and 30 to 120 [...] Read more.
This research aims to evaluate the influence of pyrolysis time and temperature on the composition and properties of bio-oil derived from Mimusops elengi. Experiments were conducted by varying the pyrolysis temperature and time from 400 to 600 °C and 30 to 120 min, respectively. Both pyrolysis temperature and time were found to significantly influence the bio-oil composition. At enhanced pyrolysis temperatures, the bio-oil yield increased while the ash and gas yields decreased. In addition, extended pyrolysis time produced a greater bio-oil yield, indicating that higher temperatures and longer durations promote additional decomposition of biomass. Functional groupings, including alcohols, phenols, ketones, esters, and aromatic compounds in the bio-oil, were identified via FT-IR analysis, indicating that the bio-oil’s diversified chemical properties make it a potential alternative feedstock. GC-MS analysis identified 26 chemical compounds in the bio-oil, of which phenol was the most abundant. However, a high phenol content can diminish bio-oil quality by enhancing acidity, decreasing heating value, and encouraging engine corrosion. Temperature and pyrolysis time are crucial factors in producing bio-oil with the desired chemical composition and physical properties. The maximum yield, 34.13%, was attained after 90 min of operation at 500 °C. The characteristics of the Mimusops elengi bio-oil produced, namely density, viscosity, pH, and HHV were 1.15 g/cm3, 1.60 cSt, 4.41, and 19.91 MJ/kg, respectively, in accordance with ASTM D7544. Using Mimusops elengi as a pyrolysis feedstock demonstrates its potential as an environmentally friendly energy source for a variety of industrial and environmental applications. The yield of bio-oil produced is not optimal due to the formation of tar, which results in the blockage of the output flow during the pyrolysis process. Full article
Show Figures

Figure 1

14 pages, 789 KiB  
Article
Investigating the Antioxidant and Cytocompatibility of Mimusops elengi Linn Extract over Human Gingival Fibroblast Cells
by Shaeesta Khaleelahmed Bhavikatti, Mohmed Isaqali Karobari, Siti Lailatul Akmar Zainuddin, Anand Marya, Sameer J. Nadaf, Vijay J. Sawant, Sandeep B. Patil, Adith Venugopal, Pietro Messina and Giuseppe Alessandro Scardina
Int. J. Environ. Res. Public Health 2021, 18(13), 7162; https://doi.org/10.3390/ijerph18137162 - 4 Jul 2021
Cited by 69 | Viewed by 5567
Abstract
Background—chlorhexidine (CHX) is most commonly used as a chemical plaque control agent. Nevertheless, its adverse effects, including teeth discoloration, taste alteration and calculus build-up, limit its use and divert us to medicinal herbs. The purpose of the study was to evaluate the phytochemical [...] Read more.
Background—chlorhexidine (CHX) is most commonly used as a chemical plaque control agent. Nevertheless, its adverse effects, including teeth discoloration, taste alteration and calculus build-up, limit its use and divert us to medicinal herbs. The purpose of the study was to evaluate the phytochemical composition, antioxidant potential, and cytotoxic effects of Mimusops elengi Linn extract (ME) over normal human cultured adult gingival fibroblasts (HGFs). Methods—in vitro phytochemical screening, total flavonoid content, antioxidant potential by DPPH and Nitric Oxide (NO) radical scavenging activity, and cytotoxic effects of ME extracts over HGF were explored. The viability of HGF cells was determined using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), neutral red uptake, and trypan blue assay after treatment with different concentrations of CHX and ME (0.3125 to 10 µg/mL). ResultsME showed some alkaloids, glycosides, saponins and flavonoids exhibited relatively moderate-to-good antioxidant potential. Increasing the concentration of CHX and ME from 0.3125 to 10 µg/mL reduced cell viability from 29.71% to 1.07% and 96.12% to 56.02%, respectively. At higher concentrations, CHX reduced the viability of cells by 52.36-fold compared to ME, revealed by MTT assay. At 10 µg/mL concentration, the mean cell viability of CHX and ME-treated cells was 2.24% and 57.45%, respectively, revealed by a neutral red assay. The viability of CHX- and ME-treated HGF cells estimated at higher concentrations (10 µg/mL) using trypan blue assay was found to be 2.18% and 47.36%, respectively. A paired t-test showed significance (p < 0.05), and one-way ANOVA difference between the mean cell viability of CHX- and ME-treated cells at different concentrations. One-way ANOVA confirmed the significant difference between the viability of CHX- and ME-treated cells. Conclusions—The cytoprotective and antioxidant effects of ME emphasize its potential benefits. Therefore, it could emerge as a herbal alternative and adjunct to conventional oral hygiene methods, that can diminish periodontal tissue destruction. Full article
(This article belongs to the Special Issue Oral Health and Disease Prevention)
Show Figures

Figure 1

13 pages, 5364 KiB  
Article
Pollution Assessment Based on Element Concentration of Tree Leaves and Topsoil in Ayutthaya Province, Thailand
by Vanda Éva Molnár, Edina Simon, Sarawut Ninsawat, Béla Tóthmérész and Szilárd Szabó
Int. J. Environ. Res. Public Health 2020, 17(14), 5165; https://doi.org/10.3390/ijerph17145165 - 17 Jul 2020
Cited by 13 | Viewed by 3850
Abstract
Atmospheric aerosol particles containing heavy metal contaminants deposit on the surface of plant leaves and the topsoil. Our aim was to reveal the pollution along an industrial–urban–rural gradient (IURG) in the central provinces of Thailand. Leaf samples from Ficus religiosa and Mimusops elengi [...] Read more.
Atmospheric aerosol particles containing heavy metal contaminants deposit on the surface of plant leaves and the topsoil. Our aim was to reveal the pollution along an industrial–urban–rural gradient (IURG) in the central provinces of Thailand. Leaf samples from Ficus religiosa and Mimusops elengi were collected along with topsoil samples under the selected trees. Al, Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn concentrations were determined by ICP-OES in soil and plant samples. Soils were not polluted according to the critical value; furthermore, the elemental composition did not differ among the sampling sites of the IURG. The rural site was also polluted due to heavy amounts of untreated wastewater of the adjacent Chao Phraya River. Bioaccumulation factors of Ba, Cu, and Mn was higher than 1, suggesting active accumulation of these elements in plant tissue. Our findings proved that the deposition of air pollutants and the resistance to air pollutants in the case of plant leaves were different and that humus materials of the soils had relevant role in bioaccumulation of Al, Ba, and Cu. At the same time, the geochemical background, the source of pollution, and the local plant species greatly influence the metal content of any given environmental compartment. Full article
(This article belongs to the Special Issue Advances in the Field of Human Health and Environment)
Show Figures

Figure 1

20 pages, 1228 KiB  
Article
Large Scale Screening of Ethnomedicinal Plants for Identification of Potential Antibacterial Compounds
by Sujogya Kumar Panda, Yugal Kishore Mohanta, Laxmipriya Padhi, Young-Hwan Park, Tapan Kumar Mohanta and Hanhong Bae
Molecules 2016, 21(3), 293; https://doi.org/10.3390/molecules21030293 - 14 Mar 2016
Cited by 81 | Viewed by 13006
Abstract
The global burden of bacterial infections is very high and has been exacerbated by increasing resistance to multiple antibiotics. Antibiotic resistance leads to failed treatment of infections, which can ultimately lead to death. To overcome antibiotic resistance, it is necessary to identify new [...] Read more.
The global burden of bacterial infections is very high and has been exacerbated by increasing resistance to multiple antibiotics. Antibiotic resistance leads to failed treatment of infections, which can ultimately lead to death. To overcome antibiotic resistance, it is necessary to identify new antibacterial agents. In this study, a total of 662 plant extracts (diverse parts) from 222 plant species (82 families, 177 genera) were screened for antibacterial activity using the agar cup plate method. The aqueous and methanolic extracts were prepared from diverse plant parts and screened against eight bacterial (two Gram-positive and six Gram-negative) species, most of which are involved in common infections with multiple antibiotic resistance. The methanolic extracts of several plants were shown to have zones of inhibition ≥ 12 mm against both Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration was calculated only with methanolic extracts of selected plants, those showed zone of inhibition ≥ 12 mm against both Gram-positive and Gram-negative bacteria. Several extracts had minimum inhibitory concentration ≤ 1 mg/mL. Specifically Adhatoda vasica, Ageratum conyzoides, Alangium salvifolium, Alpinia galanga, Andrographis paniculata, Anogeissus latifolia, Annona squamosa, A. reticulate, Azadirachta indica, Buchanania lanzan, Cassia fistula, Celastrus paniculatus, Centella asiatica, Clausena excavate, Cleome viscosa, Cleistanthus collinus, Clerodendrum indicum, Croton roxburghii, Diospyros melanoxylon, Eleutherine bulbosa, Erycibe paniculata, Eryngium foetidum, Garcinia cowa, Helicteres isora, Hemidesmus indicus, Holarrhena antidysenterica, Lannea coromandelica, Millettia extensa, Mimusops elengi, Nyctanthes arbor-tristis, Oroxylum indicum, Paederia foetida, Pterospermum acerifolium, Punica granatum, Semecarpus anacardium, Spondias pinnata, Terminalia alata and Vitex negundo were shown to have significant antimicrobial activity. The species listed here were shown to have anti-infective activity against both Gram-positive and Gram-negative bacteria. These results may serve as a guide for selecting plant species that could yield the highest probability of finding promising compounds responsible for the antibacterial activities against a broad spectrum of bacterial species. Further investigation of the phytochemicals from these plants will help to identify the lead compounds for drug discovery. Full article
Show Figures

Figure 1

Back to TopTop