Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Micromeria croatica

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2336 KB  
Article
Conserved and Divergent Phytochemical Profiles in Native and Micropropagated Micromeria croatica (Pers.) Schott: An LC-HRMS Study Across Solvent Extracts
by Svetlana M. Tošić, Marija Ilić, Ljubica Svilar, Jelena Nikolić, Milan Mitić, Violeta Mitić and Vesna P. Stankov Jovanović
Plants 2025, 14(19), 2971; https://doi.org/10.3390/plants14192971 - 25 Sep 2025
Viewed by 700
Abstract
Micromeria croatica (Pers.) Schott is a Balkan endemic of the Lamiaceae family, valued for its aromatic and medicinal properties, but it is threatened by its limited natural distribution. Micropropagation offers a sustainable method for securing biomass and provides material for chemical studies. In [...] Read more.
Micromeria croatica (Pers.) Schott is a Balkan endemic of the Lamiaceae family, valued for its aromatic and medicinal properties, but it is threatened by its limited natural distribution. Micropropagation offers a sustainable method for securing biomass and provides material for chemical studies. In this work, we present the first LC-HRMS profiling of extracts (in methanol, ethyl acetate, and hexane) obtained from both native and micropropagated plants. A total of 29 metabolites were identified. A diverse spectrum of secondary metabolites was identified, including phenolic acids (gallic acid monohydrate, vanillic acid, trans-cinnamic acid), flavonoids (luteolin-7-O-rutinoside, diosmetin-7-O-glucoside, kaempferol-O-rutinoside, eriocitrin), and terpenoids (ursolic acid, tanshinone I, riligustilide). The analysis revealed that all compounds detected in native plants were also present in micropropagated material, demonstrating the preservation of the characteristic phytochemical profile in vitro. Moreover, several compounds, such as apigenin, apigenin-7-O-glucuronide, isomaltopaeoniflorin, and methoxylated flavones, were found exclusively in micropropagated samples, indicating that tissue culture may enhance the chemical diversity of the species. Ethyl acetate extracts showed the highest degree of overlap between native and in vitro plants, whereas methanol and hexane extracts contained a greater number of unique metabolites in micropropagated material. This first comprehensive phytochemical report on M. croatica highlights the importance of micropropagation as a sustainable strategy for conserving rare species while ensuring a reliable source of bioactive metabolites. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

23 pages, 3629 KB  
Article
Morphological and Molecular Characterization of Micromeria croatica (Lamiaceae), an Endemic and Potentially Valuable Horticultural Species of the Dinaric Alps
by Zlatko Liber, Ivan Radosavljević, Zlatko Šatović, Marija Hodja, Vesna Židovec, Faruk Bogunić, Dalibor Ballian, Danijela Stešević, Sven D. Jelaska and Dario Kremer
Horticulturae 2023, 9(4), 418; https://doi.org/10.3390/horticulturae9040418 - 23 Mar 2023
Viewed by 3112
Abstract
Due to climate extremes and limited natural resources, especially water, we can expect increased demand in the future for species that can better tolerate climate extremes such as drought. One potentially valuable horticultural species is the endemic species of the Dinaride Mountains Micromeria [...] Read more.
Due to climate extremes and limited natural resources, especially water, we can expect increased demand in the future for species that can better tolerate climate extremes such as drought. One potentially valuable horticultural species is the endemic species of the Dinaride Mountains Micromeria croatica (Pers.) Schott (family Lamiaceae). It grows in the crevices of carbonate rocks, extending from an altitude of 150 m to more than 2000 m. This study aims to provide additional insight into the genetic and morphological diversity of this endemic species, focusing on valuable horticultural traits. To achieve this goal, morphological and molecular analyses were performed on ten natural populations. Through STRUCTURE and PCoA analyses, ten M. croatica populations were placed into western and eastern genetic groups, with several individuals from western populations assigned to the eastern group and vice versa. These atypical individuals assigned to the new genetic group by BAPS analysis indicate gene flow between western and eastern populations. Similarly, an analysis of molecular variance revealed fewer genetic differences than within studied populations. Both PCA and CANDISC analysis based on eleven morphological traits largely confirmed the existence of two slightly different genetic groups. Two populations containing plants with the most flowers per shoot, one with white-flowered individuals, one with the roundest leaves, and one with the narrowest leaves proved to be the most horticulturally valuable. The genetic and morphological variability found should be a sufficient basis for the potential selection of M. croatica populations and individuals for horticultural purposes. Full article
(This article belongs to the Collection Prospects of Using Wild Plant Species in Horticulture)
Show Figures

Figure 1

24 pages, 11624 KB  
Article
Micromorphological Traits of Balcanic Micromeria and Closely Related Clinopodium Species (Lamiaceae)
by Dario Kremer, Edith Stabentheiner, Faruk Bogunić, Dalibor Ballian, Eleni Eleftheriadou, Danijela Stešević, Vlado Matevski, Vladimir Ranđelović, Daniella Ivanova, Mirko Ruščić and Valerija Dunkić
Plants 2021, 10(8), 1666; https://doi.org/10.3390/plants10081666 - 13 Aug 2021
Cited by 8 | Viewed by 4076
Abstract
A study of the trichomes types and distribution and pollen morphology was carried out in nine Micromeria taxa (M. cristata ssp. cristata, M. cristata ssp. kosaninii, M. croatica, M. graeca ssp. graeca, M. graeca ssp. fruticulosa, [...] Read more.
A study of the trichomes types and distribution and pollen morphology was carried out in nine Micromeria taxa (M. cristata ssp. cristata, M. cristata ssp. kosaninii, M. croatica, M. graeca ssp. graeca, M. graeca ssp. fruticulosa, M. juliana, M. kerneri, M. longipedunculata and M. microphylla) and five closely related Clinopodium species (C. dalmaticum, C. frivaldszkyanum, C. pulegium, C. serpyllifolium and C. thymifolium) from the Lamiaceae family of the Balkan Peninsula. By scanning electron microscope, non-glandular trichomes, peltate and capitate trichomes were observed on the calyx, leaves and stem of the studied species. Two subtypes of capitate trichomes were observed in Micromeria species: subtype 1 (consisting of a basal epidermal cell and an elliptically shaped head cell) and subtype 2 (consisting of a basal epidermal cell, two to three stalk cells and a round head cell). In Clinopodium species, three types of capitate trichomes were observed: subtype 1, subtype 3 (consisting of a basal epidermal cell, a short peduncle cell, and a single round head cell), and subtype 4 (consisting of a basal epidermal cell, a stalk cell, and an elongated head cell). These results support the recent transfer of Micromeria species from the section Pseudomelissa to the genus Clinopodium. Full article
(This article belongs to the Special Issue Morphology, Anatomy and Secondary Metabolites of Mediterranean Plants)
Show Figures

Graphical abstract

15 pages, 5427 KB  
Article
Inhibition of Satellite RNA Associated Cucumber Mosaic Virus Infection by Essential Oil of Micromeria croatica (Pers.) Schott
by Elma Vuko, Gordana Rusak, Valerija Dunkić, Dario Kremer, Ivan Kosalec, Biljana Rađa and Nada Bezić
Molecules 2019, 24(7), 1342; https://doi.org/10.3390/molecules24071342 - 5 Apr 2019
Cited by 25 | Viewed by 3990
Abstract
The present results dealing with the antiphytoviral activity of essential oil indicate that these plant metabolites can trigger a response to viral infection. The essential oil from Micromeria croatica and the main oil components β-caryophyllene and caryophyllene oxide were tested for antiphytoviral activity [...] Read more.
The present results dealing with the antiphytoviral activity of essential oil indicate that these plant metabolites can trigger a response to viral infection. The essential oil from Micromeria croatica and the main oil components β-caryophyllene and caryophyllene oxide were tested for antiphytoviral activity on plants infected with satellite RNA associated cucumber mosaic virus. Simultaneous inoculation of virus with essential oil or with the dominant components of oil, and the treatment of plants prior to virus inoculation, resulted in a reduction of virus infection in the local and systemic host plants. Treatment with essential oil changed the level of alternative oxidase gene expression in infected Arabidopsis plants indicating a connection between the essential oil treatment, aox gene expression and the development of viral infection. Full article
(This article belongs to the Special Issue Biological Activities of Essential Oils)
Show Figures

Graphical abstract

17 pages, 488 KB  
Article
Antioxidant Activities and Polyphenolic Contents of Three Selected Micromeria Species from Croatia
by Sanda Vladimir-Knežević, Biljana Blažeković, Maja Bival Štefan, Antun Alegro, Tamás Kőszegi and József Petrik
Molecules 2011, 16(2), 1454-1470; https://doi.org/10.3390/molecules16021454 - 10 Feb 2011
Cited by 142 | Viewed by 12643
Abstract
Antioxidant activities of three selected Micromeria species growing in Croatia (M. croatica, M. juliana and M. thymifolia) were evaluated using five different antioxidant assays, in comparison with plant polyphenolic constituents and reference antioxidants. All studied ethanolic extracts exhibited considerable activity [...] Read more.
Antioxidant activities of three selected Micromeria species growing in Croatia (M. croatica, M. juliana and M. thymifolia) were evaluated using five different antioxidant assays, in comparison with plant polyphenolic constituents and reference antioxidants. All studied ethanolic extracts exhibited considerable activity to scavenge DPPH and hydroxyl free radicals, reducing power, iron chelating ability and total antioxidant capacity in the order: M. croatica > M. juliana > M. thymifolia. Total polyphenol (9.69–13.66%), phenolic acid (5.26–6.84%), flavonoid (0.01–0.09%) and tannin (3.07–6.48%) contents in dried plant samples were determined spectrophotometrically. A strong positive correlation between antioxidant activities and contents of phenolic acids and tannins was found, indicating their responsibility for effectiveness of tested plants. Our findings established Micromeria species as a rich source of antioxidant polyphenols, especially the endemic M. croatica. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop