Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Martian surface rock image

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 15307 KiB  
Article
Enhanced Interactive Rendering for Rovers of Lunar Polar Region and Martian Surface
by Jiehao Bi, Ang Jin, Chi Chen and Shen Ying
Remote Sens. 2024, 16(7), 1270; https://doi.org/10.3390/rs16071270 - 4 Apr 2024
Cited by 4 | Viewed by 2660
Abstract
Appropriate environmental sensing methods and visualization representations are crucial foundations for the in situ exploration of planets. In this paper, we developed specialized visualization methods to facilitate the rover’s interaction and decision-making processes, as well as to address the path-planning and obstacle-avoidance requirements [...] Read more.
Appropriate environmental sensing methods and visualization representations are crucial foundations for the in situ exploration of planets. In this paper, we developed specialized visualization methods to facilitate the rover’s interaction and decision-making processes, as well as to address the path-planning and obstacle-avoidance requirements for lunar polar region exploration and Mars exploration. To achieve this goal, we utilize simulated lunar polar regions and Martian environments. Among them, the lunar rover operating in the permanently shadowed region (PSR) of the simulated crater primarily utilizes light detection and ranging (LiDAR) for environmental sensing; then, we reconstruct a mesh using the Poisson surface reconstruction method. After that, the lunar rover’s traveling environment is represented as a red-green-blue (RGB) image, a slope coloration image, and a theoretical water content coloration image, based on different interaction needs and scientific objectives. For the rocky environment where the Mars rover is traveling, this paper enhances the display of the rocks on the Martian surface. It does so by utilizing depth information of the rock instances to highlight their significance for the rover’s path-planning and obstacle-avoidance decisions. Such an environmental sensing and enhanced visualization approach facilitates rover path-planning and remote–interactive operations, thereby enabling further exploration activities in the lunar PSR and Mars, in addition to facilitating the study and communication of specific planetary science objectives, and the production and display of basemaps and thematic maps. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Figure 1

20 pages, 5898 KiB  
Article
Rover Attitude and Camera Parameter: Rock Measurements on Mars Surface Based on Rover Attitude and Camera Parameter for Tianwen-1 Mission
by Dian Zheng, Linhui Wei, Weikun Lv, Yu Liu and Yumei Wang
Remote Sens. 2023, 15(18), 4388; https://doi.org/10.3390/rs15184388 - 6 Sep 2023
Cited by 2 | Viewed by 3176
Abstract
Rocks, prominent features on the surface of Mars, are a primary focus of Mars exploration missions. The accuracy of recognizing rock information, including size and position, deeply affects the path planning for rovers on Mars and the geological exploration of Mars. In this [...] Read more.
Rocks, prominent features on the surface of Mars, are a primary focus of Mars exploration missions. The accuracy of recognizing rock information, including size and position, deeply affects the path planning for rovers on Mars and the geological exploration of Mars. In this paper, we present a rock measurement method for the Mars surface based on a Rover Attitude and Camera Parameter (RACP). We analyze the imaging process of the Navigation and Terrain Camera (NaTeCam) on the Zhurong rover, which involves utilizing a semi-spherical model (SSM) to characterize the camera’s attitude, a projection model (PM) to connect the image data with the three-dimensional (3D) environment, and then estimating the distance and size of rocks. We conduct a test on NaTeCam images and find that the method is effective in measuring the distance and size to Martian rocks and identifying rocks at specific locations. Furthermore, an analysis of the impact of uncertain factors is conducted. The proposed RACP method offers a reliable solution for automatically analyzing the rocks on Mars, which provides a possible solution for the route planning in similar tasks. Full article
Show Figures

Graphical abstract

21 pages, 5961 KiB  
Article
Concept and Design of Martian Far-IR ORE Spectrometer (MIRORES)
by Jakub Ciazela, Jaroslaw Bakala, Miroslaw Kowalinski, Stefan Plocieniak, Natalia Zalewska, Bartosz Pieterek, Tomasz Mrozek, Marta Ciazela, Grzegorz Paslawski, Marek Steslicki, Zaneta Szaforz, Jaromir Barylak, Mateusz Kuzaj, Alessandro Maturilli, Joern Helbert, Andrzej Muszynski, Miroslaw Rataj, Szymon Gburek, Mateusz Jozefowicz and Dariusz Marciniak
Remote Sens. 2022, 14(12), 2799; https://doi.org/10.3390/rs14122799 - 10 Jun 2022
Cited by 6 | Viewed by 3887
Abstract
Sulfide ores are a major source of noble (Au, Ag, and Pt) and base (Cu, Pb, Zn, Sn, Co, Ni, etc.) metals and will, therefore, be vital for the self-sustainment of future Mars colonies. Martian meteorites are rich in sulfides, which is reflected [...] Read more.
Sulfide ores are a major source of noble (Au, Ag, and Pt) and base (Cu, Pb, Zn, Sn, Co, Ni, etc.) metals and will, therefore, be vital for the self-sustainment of future Mars colonies. Martian meteorites are rich in sulfides, which is reflected in recent findings for surface Martian rocks analyzed by the Spirit and Curiosity rovers. However, the only high-resolution (18 m/pixel) infrared (IR) spectrometer orbiting Mars, the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), onboard the Mars Reconnaissance Orbiter (MRO), is not well-suited for detecting sulfides on the Martian surface. Spectral interference with silicates impedes sulfide detection in the 0.4–3.9 μm CRISM range. In contrast, at least three common hydrothermal sulfides on Earth and Mars (pyrite, chalcopyrite, marcasite) have prominent absorption peaks in a narrow far-IR (FIR) wavelength range of 23–28 μm. Identifying the global distribution and chemical composition of sulfide ore deposits would help in choosing useful targets for future Mars exploration missions. Therefore, we have designed a new instrument suitable for measuring sulfides in the FIR range called the Martian far-IR Ore Spectrometer (MIRORES). MIRORES will measure radiation in six narrow bands (~0.3 µm in width), including three bands centered on the sulfide absorption bands (23.2, 24.3 and 27.6 µm), two reference bands (21.5 and 26.1) and one band for clinopyroxene interference (29.0 µm). Focusing on sulfides only will make it possible to adapt the instrument size (32 × 32 × 42 cm) and mass (<10 kg) to common microsatellite requirements. The biggest challenges related to this design are: (1) the small field of view conditioned by the high resolution required for such a study (<20 m/pixel), which, in limited space, can only be achieved by the use of the Cassegrain optical system; and (2) a relatively stable measurement temperature to maintain radiometric accuracy and enable precise calibration. Full article
(This article belongs to the Special Issue Mars Remote Sensing)
Show Figures

Graphical abstract

94 pages, 38060 KiB  
Article
Recognition of Sedimentary Rock Occurrences in Satellite and Aerial Images of Other Worlds—Insights from Mars
by Kenneth S. Edgett and Ranjan Sarkar
Remote Sens. 2021, 13(21), 4296; https://doi.org/10.3390/rs13214296 - 26 Oct 2021
Cited by 18 | Viewed by 13220
Abstract
Sedimentary rocks provide records of past surface and subsurface processes and environments. The first step in the study of the sedimentary rock record of another world is to learn to recognize their occurrences in images from instruments aboard orbiting, flyby, or aerial platforms. [...] Read more.
Sedimentary rocks provide records of past surface and subsurface processes and environments. The first step in the study of the sedimentary rock record of another world is to learn to recognize their occurrences in images from instruments aboard orbiting, flyby, or aerial platforms. For two decades, Mars has been known to have sedimentary rocks; however, planet-wide identification is incomplete. Global coverage at 0.25–6 m/pixel, and observations from the Curiosity rover in Gale crater, expand the ability to recognize Martian sedimentary rocks. No longer limited to cases that are light-toned, lightly cratered, and stratified—or mimic original depositional setting (e.g., lithified deltas)—Martian sedimentary rocks include dark-toned examples, as well as rocks that are erosion-resistant enough to retain small craters as well as do lava flows. Breakdown of conglomerates, breccias, and even some mudstones, can produce a pebbly regolith that imparts a “smooth” appearance in satellite and aerial images. Context is important; sedimentary rocks remain challenging to distinguish from primary igneous rocks in some cases. Detection of ultramafic, mafic, or andesitic compositions do not dictate that a rock is igneous, and clast genesis should be considered separately from the depositional record. Mars likely has much more sedimentary rock than previously recognized. Full article
(This article belongs to the Special Issue Mars Remote Sensing)
Show Figures

Figure 1

13 pages, 44979 KiB  
Article
GMSRI: A Texture-Based Martian Surface Rock Image Dataset
by Cong Wang, Zian Zhang, Yongqiang Zhang, Rui Tian and Mingli Ding
Sensors 2021, 21(16), 5410; https://doi.org/10.3390/s21165410 - 10 Aug 2021
Cited by 6 | Viewed by 3560
Abstract
CNN-based Martian rock image processing has attracted much attention in Mars missions lately, since it can help planetary rover autonomously recognize and collect high value science targets. However, due to the difficulty of Martian rock image acquisition, the accuracy of the processing model [...] Read more.
CNN-based Martian rock image processing has attracted much attention in Mars missions lately, since it can help planetary rover autonomously recognize and collect high value science targets. However, due to the difficulty of Martian rock image acquisition, the accuracy of the processing model is affected. In this paper, we introduce a new dataset called “GMSRI” that is a mixture of real Mars images and synthetic counterparts which are generated by GAN. GMSRI aims to provide a set of Martian rock images sorted by the texture and spatial structure of rocks. This paper offers a detailed analysis of GMSRI in its current state: Five sub-trees with 28 leaf nodes and 30,000 images in total. We show that GMSRI is much larger in scale and diversity than the current same kinds of datasets. Constructing such a database is a challenging task, and we describe the data collection, selection and generation processes carefully in this paper. Moreover, we evaluate the effectiveness of the GMSRI by an image super-resolution task. We hope that the scale, diversity and hierarchical structure of GMSRI can offer opportunities to researchers in the Mars exploration community and beyond. Full article
(This article belongs to the Special Issue Deep Learning Image Recognition Systems)
Show Figures

Figure 1

Back to TopTop