Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Mamyshev oscillator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4149 KB  
Review
Research Progress of Passively Mode-Locked Fiber Lasers Based on Saturable Absorbers
by Jiayi Xie, Tengfei Liu, Xilong Liu, Fang Wang and Weiwei Liu
Nanomaterials 2025, 15(23), 1819; https://doi.org/10.3390/nano15231819 - 1 Dec 2025
Viewed by 362
Abstract
Ultrashort fiber lasers are one of the current research hotspots in the field of lasers. They have the advantages of compact structure and high beam quality. Passively mode-locking using saturable absorbers (SAs) is an important scheme for generating picosecond and femtosecond pulses. A [...] Read more.
Ultrashort fiber lasers are one of the current research hotspots in the field of lasers. They have the advantages of compact structure and high beam quality. Passively mode-locking using saturable absorbers (SAs) is an important scheme for generating picosecond and femtosecond pulses. A deep understanding of the passive mode-locking mechanism is key to maturing ultrafast laser technology. In recent years, the passively mode-locking technology of SAs has been improved in material systems, device preparation, and cavity structures. SAs are primarily divided into artificial SAs and real SAs. Real SAs primarily include semiconductor saturable absorption mirrors (SEASAMs) and nanomaterials. Artificial SAs primarily include nonlinear optical loop mirrors (NOLMs), nonlinear multimode interference (NLMMI), nonlinear polarization rotation (NPR), and the Mamyshev oscillator. Herein, we mainly review passively mode-locked fiber lasers employing various SAs, as well as their working principles and technical characteristics. By focusing on the representative achievements, the developmental achievements of ultrafast lasers based on SAs are demonstrated. Finally, the prevailing challenges and promising future research directions in SA’s mode-locking technology are discussed. Full article
Show Figures

Figure 1

11 pages, 5019 KB  
Article
The Influence of Spectral Filtering Bandwidth and Laser Gain on the Bound-State Pulse Formation Mechanism and Evolutionary Dynamics in the All-Fiber Mamyshev Oscillator
by Yaoyao Qi, Tianchen Zhang, Zhenxu Bai, Jie Ding, Bingzheng Yan, Yulei Wang, Zhiwei Lu and Dapeng Yan
Photonics 2024, 11(2), 139; https://doi.org/10.3390/photonics11020139 - 1 Feb 2024
Cited by 7 | Viewed by 3678
Abstract
We present a numerical investigation of the bound-state pulse formation mechanism and evolutionary dynamics based on the pump strength and spectral filtering bandwidth in the all-fiber Mamyshev oscillator. Through the numerical simulation and analysis, the different mode-locked pulses’ (such as single pulses, bound-state [...] Read more.
We present a numerical investigation of the bound-state pulse formation mechanism and evolutionary dynamics based on the pump strength and spectral filtering bandwidth in the all-fiber Mamyshev oscillator. Through the numerical simulation and analysis, the different mode-locked pulses’ (such as single pulses, bound-state pulses, and chaotic multi-pulses) regime transformation conditions are quantified. The results suggest that with an increase in the pump strength, the sub-pulse energy and output coupler of the Mamyshev oscillator show an inverse proportion trend, which plays an important role in increasing the number of sub-pulses in the bound-state pulses’ state. Furthermore, optimization schemes, such as adjusting the filter bandwidth and slowing down the accumulation of nonlinear effects, are proposed to achieve a high-energy pulse output in the Mamyshev oscillator. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications)
Show Figures

Figure 1

12 pages, 9818 KB  
Communication
Regenerative Shaper of Ultrashort Light Pulses
by Kęstutis Regelskis, Gustas Liaugminas and Julijanas Želudevičius
Photonics 2023, 10(7), 836; https://doi.org/10.3390/photonics10070836 - 20 Jul 2023
Cited by 2 | Viewed by 2417
Abstract
In this article, we propose and demonstrate an ultrashort light pulse regenerative shaper based on a closed-loop double-stage Mamyshev regenerator with an electrically controllable acousto-optic switch. This setup allowed us to apply an initial pulse from an external pulse source and to reshape [...] Read more.
In this article, we propose and demonstrate an ultrashort light pulse regenerative shaper based on a closed-loop double-stage Mamyshev regenerator with an electrically controllable acousto-optic switch. This setup allowed us to apply an initial pulse from an external pulse source and to reshape the pulse to an ultrashort, high-quality, compressible one, the parameters of which were determined by the parameters of the regenerative circuit (RC), due to repeated pulse round-trips in the closed-loop RC. It was found that after 3–7 round-trips the energy of the regenerated pulse was almost independent of the energy of the initial pulse. However, at least 20 round-trips in the RC were required to shape the steady repetitive pulse. In addition, we demonstrated, both experientially and numerically, that the generation of periodic pulse sequences with limited pump power can lead to a rearrangement of the pulse sequences, which results in variations in the length of the pulse sequence from period to period. Full article
Show Figures

Figure 1

12 pages, 4162 KB  
Article
Output Pulse Characteristics of a Mamyshev Fiber Oscillator
by Haili Han, Nan-Kuang Chen, Liqiang Zhang, Yanru Xie, Zhen Tian, Yicun Yao, Yuanchuan Huang and Xia Zhang
Photonics 2021, 8(12), 590; https://doi.org/10.3390/photonics8120590 - 18 Dec 2021
Cited by 11 | Viewed by 5115
Abstract
The dependence of the output pulse characteristics of a Mamyshev fiber oscillator on cavity parameters is investigated in detail. We analyze the change in pulse spectrum bandwidth, pulse duration, dechirped pulse duration and chirp with the change in fiber group velocity dispersion, fiber [...] Read more.
The dependence of the output pulse characteristics of a Mamyshev fiber oscillator on cavity parameters is investigated in detail. We analyze the change in pulse spectrum bandwidth, pulse duration, dechirped pulse duration and chirp with the change in fiber group velocity dispersion, fiber nonlinearity, gain, and filters by putting forward a numerical model. In particular, as one of the most important components, the effect of filters bandwidth and the central wavelength interval between them is discussed. The passive fibers are classified into two kinds according to their locations in the cavity, which are the one before the gain fiber and the one after the gain fiber. Numerical simulation results show that a wide spectrum can be obtained by increasing the nonlinearity of the second passive fiber, while the change in nonlinearity of the first passive fiber has a weak effect on spectrum broadening. A wide spectrum could also be obtained by increasing the nonlinearity or the small-signal gain coefficient of the gain fiber. A Yb-doped Mamyshev fiber oscillator is demonstrated. The results show the increase in pump power, which agrees reasonably well with the numerical simulation results. Full article
(This article belongs to the Special Issue Mode Locked Fiber Laser)
Show Figures

Figure 1

7 pages, 2603 KB  
Article
Influence of Spectral Filtration on Pulse Dynamics in Ring-Cavity Mamyshev Oscillator
by Anastasia Bednyakova, Evgeny Kuprikov, Irina Geraseva and Alexey Kokhanovskiy
Appl. Sci. 2021, 11(21), 10398; https://doi.org/10.3390/app112110398 - 5 Nov 2021
Cited by 14 | Viewed by 3095
Abstract
Here we present a numerical study of pulsing build-up dynamics inside the fiber Mamyshev Oscillator (MO). The main scope of the investigation is to describe the influence of the spectral separation between the filters on self-starting MO dynamics and transition from multipulse to [...] Read more.
Here we present a numerical study of pulsing build-up dynamics inside the fiber Mamyshev Oscillator (MO). The main scope of the investigation is to describe the influence of the spectral separation between the filters on self-starting MO dynamics and transition from multipulse to single-pulse generation regimes. It was found that Floquet stability analysis provides a straightforward way to determine whether the system will be self-starting or if it has to be excited by external source and predicts the repetition rate of the pulse train. We showed that spectrally overlapped bandpass filters provide reliable multi-pulse generation due to Faraday instability. Adiabatic increase in the spectral separation between the filters decreases the number of pulses down to single-pulse regime, therefore providing a flexible way to generate adjustable number of mode-locked pulses on demand. Full article
(This article belongs to the Special Issue Pulsed Fiber Lasers and Their Applications)
Show Figures

Figure 1

Back to TopTop