Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = MIRA-LFD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2818 KiB  
Article
Dual Detection of Pathogenic tdh and trh Genes of Vibrio parahaemolyticus in Oysters Using Multienzyme Isothermal Rapid Amplification (MIRA) Combined with Lateral-Flow Dipstick (LFD) Assay
by Seong Bin Park, Sam K. C. Chang, Lin Bi, Yunim Cha and Yan Zhang
Microbiol. Res. 2025, 16(5), 87; https://doi.org/10.3390/microbiolres16050087 - 22 Apr 2025
Viewed by 685
Abstract
Vibrio parahaemolyticus is a foodborne pathogen commonly associated with the consumption of contaminated seafood, particularly oysters. While PCR and real-time PCR are widely used to detect its pathogenicity through tdh and trh gene detection, these methods may not be practical in resource-limited settings [...] Read more.
Vibrio parahaemolyticus is a foodborne pathogen commonly associated with the consumption of contaminated seafood, particularly oysters. While PCR and real-time PCR are widely used to detect its pathogenicity through tdh and trh gene detection, these methods may not be practical in resource-limited settings such as field environments. To address this limitation, a rapid, sensitive, and specific duplex detection method was developed using the multienzyme isothermal rapid amplification (MIRA) assay in combination with lateral flow dipstick (LFD) technology. The assay utilized specific primer sets and probes to simultaneously amplify tdh and trh fragments tagged with 3′-FAM and 5′-Digoxigenin or Biotin during MIRA amplification, enabling the detection via respective antibody capture on the LFD strip. This duplex MIRA-LFD assay demonstrated a detection limit of 100 fg of DNA, 300 CFU/reaction for bacterial culture, and 3000 CFU/reaction for seeded oyster samples at 40 °C within 20 min. Notably, the assay exhibited no cross-reactivity with nine other Vibrio species or 18 foodborne pathogens, confirming its high specificity. Due to its simplicity, rapid turnaround time, and high sensitivity, this duplex MIRA-LFD assay offers a valuable tool for the surveillance of V. parahaemolyticus pathogenicity, aiding in public health protection and supporting the local seafood industry. Full article
Show Figures

Figure 1

16 pages, 1892 KiB  
Article
Super-Fast Detection of Bacillus cereus by Combining Cellulose Filter Paper-Based DNA Extraction, Multienzyme Isothermal Rapid Amplification, and Lateral Flow Dipstick (MIRA-LFD)
by Shuqiong Yi, Nali Zhou, Yan Ma, Lunzhao Yi and Ying Shang
Foods 2025, 14(3), 454; https://doi.org/10.3390/foods14030454 - 30 Jan 2025
Viewed by 1277
Abstract
Bacillus cereus is a widespread foodborne pathogen that can cause food poisoning when present in food at certain levels. Ingesting contaminated food may lead to symptoms such as abdominal pain, diarrhea, and, in severe cases, life-threatening conditions. In this study, a simple and [...] Read more.
Bacillus cereus is a widespread foodborne pathogen that can cause food poisoning when present in food at certain levels. Ingesting contaminated food may lead to symptoms such as abdominal pain, diarrhea, and, in severe cases, life-threatening conditions. In this study, a simple and super-fast method for detecting B. cereus was developed, which combines cellulose filter paper-based DNA extraction, multienzyme isothermal rapid amplification (MIRA), and lateral flow dipstick (LFD) technology. Initially, PCR was adopted to evaluate the DNA extraction efficiency of the filter paper, followed by the optimization of the lysis formula and extraction conditions. With the above optimization, DNA that can be used for subsequent nucleic acid amplification can be obtained within 3 min. Then, the isothermal amplification of MIRA–LFD was established and optimized to evaluate the detection specificity and sensitivity. Finally, the developed method was applied to detect B. cereus in cooked rice samples. The results indicated that the entire amplification procedure of MIRA-LFD only takes 15 min at 39 °C. The whole super-fast detection system could be completed in less than 20 min, from DNA extraction to result interpretation, which achieved a detection limit of 12 fg/μL of DNA concentration, corresponding to approximately 115 CFU/mL in actual samples. Full article
(This article belongs to the Special Issue Advancing Food Safety through PCR and Modern Detection Techniques)
Show Figures

Figure 1

12 pages, 1962 KiB  
Article
The Development of a Multienzyme Isothermal Rapid Amplification Assay to Visually Detect Duck Hepatitis B Virus
by Shuqi Xu, Yuanzhuo Man, Xin Xu, Jun Ji, Yan Wang, Lunguang Yao, Qingmei Xie and Yingzuo Bi
Vet. Sci. 2024, 11(5), 191; https://doi.org/10.3390/vetsci11050191 - 26 Apr 2024
Cited by 3 | Viewed by 2315
Abstract
Duck hepatitis B virus (DHBV) is widely prevalent in global ducks and has been identified in Chinese geese with a high prevalence; the available detection techniques are time-consuming and require sophisticated equipment. In this study, an assay combining multienzyme isothermal rapid amplification (MIRA) [...] Read more.
Duck hepatitis B virus (DHBV) is widely prevalent in global ducks and has been identified in Chinese geese with a high prevalence; the available detection techniques are time-consuming and require sophisticated equipment. In this study, an assay combining multienzyme isothermal rapid amplification (MIRA) and lateral flow dipstick (LFD) was developed for the efficient and rapid detection of DHBV. The primary reaction condition of the MIRA assay for DHBV detection was 10 min at 38 °C without a temperature cycler. Combined with the LFD assay, the complete procedure of the newly developed MIRA assay for DHBV detection required only 15 min, which is about one-fourth of the reaction time for routine polymerase chain reaction assay. And electrophoresis and gel imaging equipment were not required for detection and to read the results. Furthermore, the detection limit of MIRA was 45.6 copies per reaction, which is approximately 10 times lower than that of a routine polymerase chain reaction assay. The primer set and probe had much simpler designs than loop-mediated isothermal amplification, and they were only specific to DHBV, with no cross-reactivity with duck hepatitis A virus subtype 1 and duck hepatitis A virus subtype 3, goose parvovirus, duck enteritis virus, duck circovirus, or Riemerella anatipestifer. In this study, we offer a simple, fast, and accurate assay method to identify DHBV in clinical serum samples of ducks and geese, which would be suitable for widespread application in field clinics. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

13 pages, 2874 KiB  
Article
Development of Multienzyme Isothermal Rapid Amplification (MIRA) Combined with Lateral-Flow Dipstick (LFD) Assay to Detect Species-Specific tlh and Pathogenic trh and tdh Genes of Vibrio parahaemolyticus
by Seong Bin Park and Yan Zhang
Pathogens 2024, 13(1), 57; https://doi.org/10.3390/pathogens13010057 - 6 Jan 2024
Cited by 10 | Viewed by 2879
Abstract
Vibrio parahaemolyticus causes severe gastroenteritis in humans after consuming contaminated raw or undercooked seafood. A species-specific marker, the thermolabile hemolysin (tlh) gene, and two pathogenic markers, thermostable-related hemolysin (trh) and thermostable-direct hemolysin (tdh) genes, have been used [...] Read more.
Vibrio parahaemolyticus causes severe gastroenteritis in humans after consuming contaminated raw or undercooked seafood. A species-specific marker, the thermolabile hemolysin (tlh) gene, and two pathogenic markers, thermostable-related hemolysin (trh) and thermostable-direct hemolysin (tdh) genes, have been used to identify V. parahaemolyticus and determine its pathogenicity using both PCR and qPCR assays. To enable testing in field conditions with limited resources, this study aimed to develop a simple and rapid method to detect the species-specific (tlh) and pathogenic (trh and tdh) genes of V. parahaemolyticus using multienzyme isothermal rapid amplification (MIRA) combined with a lateral-flow dipstick (LFD). The amplification of the tlh, trh, and tdh genes could be completed within 20 min at temperatures ranging from 30 to 45 °C (p < 0.05). The test yielded positive results for V. parahaemolyticus but produced negative results for nine Vibrio species and eighteen foodborne pathogenic bacterial species. MIRA-LFD could detect 10 fg of DNA and 2 colony-forming units (CFU) of V. parahaemolyticus per reaction, demonstrating a sensitivity level comparable to that of qPCR, which can detect 10 fg of DNA and 2 CFU per reaction. Both MIRA-LFD and qPCR detected seven tlh-positive results from thirty-six oyster samples, whereas one positive result was obtained using the PCR assay. No positive results for the trh and tdh genes were obtained from any oyster samples using MIRA-LFD, PCR, and qPCR. This study suggests that MIRA-LFD is a simple and rapid method to detect species-specific and pathogenic genes of V. parahaemolyticus with high sensitivity. Full article
Show Figures

Figure 1

11 pages, 4159 KiB  
Article
Rapid and Sensitive Detection of Streptococcus iniae in Trachinotus ovatus Based on Multienzyme Isothermal Rapid Amplification
by Yifen Wang, Jingjing Niu, Minmin Sun, Ziyi Li, Xiangyuan Wang, Yan He and Jie Qi
Int. J. Mol. Sci. 2023, 24(9), 7733; https://doi.org/10.3390/ijms24097733 - 23 Apr 2023
Cited by 18 | Viewed by 2510
Abstract
Infectious diseases caused by Streptococcus iniae lead to massive death of fish, compose a serious threat to the global aquaculture industry, and constitute a risk to humans who deal with raw fish. In order to realize the early diagnosis of S. iniae, [...] Read more.
Infectious diseases caused by Streptococcus iniae lead to massive death of fish, compose a serious threat to the global aquaculture industry, and constitute a risk to humans who deal with raw fish. In order to realize the early diagnosis of S. iniae, and control the outbreak and spread of disease, it is of great significance to establish fast, sensitive, and convenient detection methods for S. iniae. In the present study, two methods of real-time MIRA (multienzyme isothermal rapid amplification, MIRA) and MIRA-LFD (combining MIRA with lateral flow dipsticks (LFD)) for the simA gene of S. iniae were established, which could complete amplification at a constant temperature of 42 °C within 20 min. Real-time MIRA and MIRA-LFD assays showed high sensitivity (97 fg/μL or 7.6 × 102 CFU/mL), which were consistent with the sensitivity of real-time PCR and 10 times higher than that of PCR with strong specificity, repeatability simplicity, and rapidity for S. iniae originating from Trachinotus ovatus. In summary, real-time MIRA and MIRA-LFD provide effective ways for early diagnosis of S. iniae in aquaculture, especially for units in poor conditions. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

Back to TopTop