Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = MERS-CoV complications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 212 KiB  
Article
Nurse Who Had MERS-CoV Complications with A Near-Death Experience during Pregnancy: A Narrative Analysis
by Abbas Al Mutair, Zainab Ambani, Alexander Woodman, Chandni Saha, Hanan F. Alharbi and Alya Elgamri
Healthcare 2024, 12(3), 298; https://doi.org/10.3390/healthcare12030298 - 24 Jan 2024
Cited by 1 | Viewed by 2543
Abstract
Background: According to prevailing views in neuroscience, near-death experiences (NDE) occurring after severe head trauma, critical illness, or coma are often life-transforming experiences in which no awareness or sensory experience of any kind is possible. Although there are general patterns, each case is [...] Read more.
Background: According to prevailing views in neuroscience, near-death experiences (NDE) occurring after severe head trauma, critical illness, or coma are often life-transforming experiences in which no awareness or sensory experience of any kind is possible. Although there are general patterns, each case is quite different from the other and requires accurate recording and reporting to potentially explain the phenomenon. Aim: This narrative study aimed to explore a pregnant woman’s NDE due to complications from MERS-CoV. Methods: This was a qualitative narrative study with the administration of two unstructured interviews. After the second interview, the participant completed the Greyson NDE scale, presented through descriptive statistics. Qualitative data were analyzed using Labov’s model of narrative analysis through abstract, orientation, complicating action, evaluation, resolution, and coda. Results: The Greyson scale resulted in a total score of 12, confirming that the patient had experienced an NDE. Labov’s model of narrative analysis revealed that the patient’s experience was not limited to the NDE but had implications for her recovery and life. The patient experienced all three types of NDEs: out-of-body, transcendental, including the transition of consciousness to another dimension, and a combined experience. She also suffered from prolonged hallucinations, neuropathy, and post-intensive care syndrome (PICS). At the same time, the patient experienced what is known as NDE aftereffects, which are caused by a change in beliefs and values; she began to lead a more altruistic life and became interested in the meaning of life. Conclusions: NDE survivors should be encouraged to talk more and share their stories with others if they wish. This study not only investigates the NDE but also considerably adds to the existing literature by integrating a unique cultural view from a country outside of the US and other Western nations, and it highlights the significant role of healthcare providers in NDEs and the importance of communication with comatose patients. It underscores the need for compassion when dealing with patients with NDEs. Full article
(This article belongs to the Section Nursing)
25 pages, 3427 KiB  
Review
Aspects of Nanotechnology for COVID-19 Vaccine Development and Its Delivery Applications
by Pranav Kumar Prabhakar, Navneet Khurana, Manish Vyas, Vikas Sharma, Gaber El-Saber Batiha, Harpreet Kaur, Jashanpreet Singh, Deepak Kumar, Neha Sharma, Ajeet Kaushik and Raj Kumar
Pharmaceutics 2023, 15(2), 451; https://doi.org/10.3390/pharmaceutics15020451 - 30 Jan 2023
Cited by 18 | Viewed by 5237
Abstract
Coronavirus, a causative agent of the common cold to a much more complicated disease such as “severe acute respiratory syndrome (SARS-CoV-2), Middle East Respiratory Syndrome (MERS-CoV-2), and Coronavirus Disease 2019 (COVID-19)”, is a member of the coronaviridae family and contains a positive-sense single-stranded [...] Read more.
Coronavirus, a causative agent of the common cold to a much more complicated disease such as “severe acute respiratory syndrome (SARS-CoV-2), Middle East Respiratory Syndrome (MERS-CoV-2), and Coronavirus Disease 2019 (COVID-19)”, is a member of the coronaviridae family and contains a positive-sense single-stranded RNA of 26–32 kilobase pairs. COVID-19 has shown very high mortality and morbidity and imparted a significantly impacted socioeconomic status. There are many variants of SARS-CoV-2 that have originated from the mutation of the genetic material of the original coronavirus. This has raised the demand for efficient treatment/therapy to manage newly emerged SARS-CoV-2 infections successfully. However, different types of vaccines have been developed and administered to patients but need more attention because COVID-19 is not under complete control. In this article, currently developed nanotechnology-based vaccines are explored, such as inactivated virus vaccines, mRNA-based vaccines, DNA-based vaccines, S-protein-based vaccines, virus-vectored vaccines, etc. One of the important aspects of vaccines is their administration inside the host body wherein nanotechnology can play a very crucial role. Currently, more than 26 nanotechnology-based COVID-19 vaccine candidates are in various phases of clinical trials. Nanotechnology is one of the growing fields in drug discovery and drug delivery that can also be used for the tackling of coronavirus. Nanotechnology can be used in various ways to design and develop tools and strategies for detection, diagnosis, and therapeutic and vaccine development to protect against COVID-19. The design of instruments for speedy, precise, and sensitive diagnosis, the fabrication of potent sanitizers, the delivery of extracellular antigenic components or mRNA-based vaccines into human tissues, and the administration of antiretroviral medicines into the organism are nanotechnology-based strategies for COVID-19 management. Herein, we discuss the application of nanotechnology in COVID-19 vaccine development and the challenges and opportunities in this approach. Full article
Show Figures

Figure 1

24 pages, 1251 KiB  
Review
An Attention towards the Prophylactic and Therapeutic Options of Phytochemicals for SARS-CoV-2: A Molecular Insight
by Shoaib Shoaib, Mohammad Azam Ansari, Geetha Kandasamy, Rajalakshimi Vasudevan, Umme Hani, Waseem Chauhan, Maryam S. Alhumaidi, Khadijah A. Altammar, Sarfuddin Azmi, Wasim Ahmad, Shadma Wahab and Najmul Islam
Molecules 2023, 28(2), 795; https://doi.org/10.3390/molecules28020795 - 13 Jan 2023
Cited by 12 | Viewed by 4667
Abstract
The novel pathogenic virus was discovered in Wuhan, China (December 2019), and quickly spread throughout the world. Further analysis revealed that the pathogenic strain of virus was corona but it was distinct from other coronavirus strains, and thus it was renamed 2019-nCoV or [...] Read more.
The novel pathogenic virus was discovered in Wuhan, China (December 2019), and quickly spread throughout the world. Further analysis revealed that the pathogenic strain of virus was corona but it was distinct from other coronavirus strains, and thus it was renamed 2019-nCoV or SARS-CoV-2. This coronavirus shares many characteristics with other coronaviruses, including SARS-CoV and MERS-CoV. The clinical manifestations raised in the form of a cytokine storm trigger a complicated spectrum of pathophysiological changes that include cardiovascular, kidney, and liver problems. The lack of an effective treatment strategy has imposed a health and socio-economic burden. Even though the mortality rate of patients with this disease is lower, since it is judged to be the most contagious, it is considered more lethal. Globally, the researchers are continuously engaged to develop and identify possible preventive and therapeutic regimens for the management of disease. Notably, to combat SARS-CoV-2, various vaccine types have been developed and are currently being tested in clinical trials; these have also been used as a health emergency during a pandemic. Despite this, many old antiviral and other drugs (such as chloroquine/hydroxychloroquine, corticosteroids, and so on) are still used in various countries as emergency medicine. Plant-based products have been reported to be safe as alternative options for several infectious and non-infectious diseases, as many of them showed chemopreventive and chemotherapeutic effects in the case of tuberculosis, cancer, malaria, diabetes, cardiac problems, and others. Therefore, plant-derived products may play crucial roles in improving health for a variety of ailments by providing a variety of effective cures. Due to current therapeutic repurposing efforts against this newly discovered virus, we attempted to outline many plant-based compounds in this review to aid in the fight against SARS-CoV-2. Full article
Show Figures

Figure 1

39 pages, 3622 KiB  
Article
Shared 6mer Peptides of Human and Omicron (21K and 21L) at SARS-CoV-2 Mutation Sites
by Yekbun Adiguzel and Yehuda Shoenfeld
Antibodies 2022, 11(4), 68; https://doi.org/10.3390/antib11040068 - 25 Oct 2022
Cited by 2 | Viewed by 2654
Abstract
We investigated the short sequences involving Omicron 21K and Omicron 21L variants to reveal any possible molecular mimicry-associated autoimmunity risks and changes in those. We first identified common 6mers of the viral and human protein sequences present for both the mutant (Omicron) and [...] Read more.
We investigated the short sequences involving Omicron 21K and Omicron 21L variants to reveal any possible molecular mimicry-associated autoimmunity risks and changes in those. We first identified common 6mers of the viral and human protein sequences present for both the mutant (Omicron) and nonmutant (SARS-CoV-2) versions of the same viral sequence and then predicted the binding affinities of those sequences to the HLA supertype representatives. We evaluated change in the potential autoimmunity risk, through comparative assessment of the nonmutant and mutant viral sequences and their similar human peptides with common 6mers and affinities to the same HLA allele. This change is the lost and the new, or de novo, autoimmunity risk, associated with the mutations in the Omicron 21K and Omicron 21L variants. Accordingly, e.g., the affinity of virus-similar sequences of the Ig heavy chain junction regions shifted from the HLA-B*15:01 to the HLA-A*01:01 allele at the mutant sequences. Additionally, peptides of different human proteins sharing 6mers with SARS-CoV-2 proteins at the mutation sites of interest and with affinities to the HLA-B*07:02 allele, such as the respective SARS-CoV-2 sequences, were lost. Among all, any possible molecular mimicry-associated novel risk appeared to be prominent in HLA-A*24:02 and HLA-B*27:05 serotypes upon infection with Omicron 21L. Associated disease, pathway, and tissue expression data supported possible new risks for the HLA-B*27:05 and HLA-A*01:01 serotypes, while the risks for the HLA-B*07:02 serotypes could have been lost or diminished, and those for the HLA-A*03:01 serotypes could have been retained, for the individuals infected with Omicron variants under study. These are likely to affect the complications related to cross-reactions influencing the relevant HLA serotypes upon infection with Omicron 21K and Omicron 21L. Full article
(This article belongs to the Special Issue The Role of Antibodies in SARS-CoV-2 Infection)
Show Figures

Graphical abstract

14 pages, 2341 KiB  
Case Report
SARS-CoV-2 Is Persistent in Placenta and Causes Macroscopic, Histopathological, and Ultrastructural Changes
by André Luiz N. Parcial, Natália Gedeão Salomão, Elyzabeth Avvad Portari, Laíza Vianna Arruda, Jorge José de Carvalho, Herbert Leonel de Matos Guedes, Thayana Camara Conde, Maria Elizabeth Moreira, Marcelo Meuser Batista, Marciano Viana Paes, Kíssila Rabelo and Adriano Gomes-Silva
Viruses 2022, 14(9), 1885; https://doi.org/10.3390/v14091885 - 26 Aug 2022
Cited by 5 | Viewed by 6009
Abstract
SARS-CoV-2 is a virus that belongs to the Betacoronavirus genus of the Coronaviridae family. Other coronaviruses, such as SARS-CoV and MERS-CoV, were associated with complications in pregnant women. Therefore, this study aimed to report the clinical history of five pregnant women infected with [...] Read more.
SARS-CoV-2 is a virus that belongs to the Betacoronavirus genus of the Coronaviridae family. Other coronaviruses, such as SARS-CoV and MERS-CoV, were associated with complications in pregnant women. Therefore, this study aimed to report the clinical history of five pregnant women infected with SARS-CoV-2 (four symptomatic and one asymptomatic who gave birth to a stillborn child) during the COVID-19 pandemic. They gave birth between August 2020 to January 2021, a period in which there was still no vaccination for COVID-19 in Brazil. In addition, their placental alterations were later investigated, focusing on macroscopic, histopathological, and ultrastructural aspects compared to a prepandemic sample. Three of five placentas presented SARS-CoV-2 RNA detected by RT-PCRq at least two to twenty weeks after primary pregnancy infection symptoms, and SARS-CoV-2 spike protein was detected in all placentas by immunoperoxidase assay. The macroscopic evaluation of the placentas presented congested vascular trunks, massive deposition of fibrin, areas of infarctions, and calcifications. Histopathological analysis showed fibrin deposition, inflammatory infiltrate, necrosis, and blood vessel thrombosis. Ultrastructural aspects of the infected placentas showed a similar pattern of alterations between the samples, with predominant characteristics of apoptosis and detection of virus-like particles. These findings contribute to a better understanding of the consequences of SARS-CoV-2 infection in placental tissue, vertical transmission. Full article
(This article belongs to the Special Issue SARS-CoV-2 in Pregnancy and Reproduction)
Show Figures

Figure 1

14 pages, 1524 KiB  
Review
SARS-CoV-2, COVID-19, and Reproduction: Effects on Fertility, Pregnancy, and Neonatal Life
by Julien Harb, Nour Debs, Mohamad Rima, Yingliang Wu, Zhijian Cao, Hervé Kovacic, Ziad Fajloun and Jean-Marc Sabatier
Biomedicines 2022, 10(8), 1775; https://doi.org/10.3390/biomedicines10081775 - 22 Jul 2022
Cited by 20 | Viewed by 6465
Abstract
Since its discovery in Wuhan, China, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread over the world, having a huge impact on people’s lives and health. The respiratory system is often targeted in people with the coronavirus disease 2019 (COVID-19). The virus [...] Read more.
Since its discovery in Wuhan, China, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread over the world, having a huge impact on people’s lives and health. The respiratory system is often targeted in people with the coronavirus disease 2019 (COVID-19). The virus can also infect many organs and tissues in the body, including the reproductive system. The consequences of the SARS-CoV-2 infection on fertility and pregnancy in hosts are poorly documented. Available data on other coronaviruses, such as severe acute respiratory syndrome (SARS-CoV) and Middle Eastern Respiratory Syndrome (MERS-CoV) coronaviruses, identified pregnant women as a vulnerable group with increased pregnancy-related complications. COVID-19 was also shown to impact pregnancy, which can be seen in either the mother or the fetus. Pregnant women more likely require COVID-19 intensive care treatment than non-pregnant women, and they are susceptible to giving birth prematurely and having their newborns admitted to the neonatal intensive care unit. Angiotensin converting enzyme 2 (ACE2), a key player of the ubiquitous renin-angiotensin system (RAS), is the principal host cellular receptor for SARS-CoV-2 spike protein. ACE2 is involved in the regulation of both male and female reproductive systems, suggesting that SARS-CoV-2 infection and associated RAS dysfunction could affect reproduction. Herein, we review the current knowledge about COVID-19 consequences on male and female fertility, pregnant women, and their fetuses. Furthermore, we describe the effects of COVID-19 vaccination on reproduction. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

29 pages, 955 KiB  
Review
Immune Profiling of COVID-19 in Correlation with SARS and MERS
by Bariaa A. Khalil, Sarra B. Shakartalla, Swati Goel, Bushra Madkhana, Rabih Halwani, Azzam A. Maghazachi, Habiba AlSafar, Basem Al-Omari and Mohammad T. Al Bataineh
Viruses 2022, 14(1), 164; https://doi.org/10.3390/v14010164 - 17 Jan 2022
Cited by 15 | Viewed by 4939
Abstract
Acute respiratory distress syndrome (ARDS) is a major complication of the respiratory illness coronavirus disease 2019, with a death rate reaching up to 40%. The main underlying cause of ARDS is a cytokine storm that results in a dysregulated immune response. This review [...] Read more.
Acute respiratory distress syndrome (ARDS) is a major complication of the respiratory illness coronavirus disease 2019, with a death rate reaching up to 40%. The main underlying cause of ARDS is a cytokine storm that results in a dysregulated immune response. This review discusses the role of cytokines and chemokines in SARS-CoV-2 and its predecessors SARS-CoV and MERS-CoV, with particular emphasis on the elevated levels of inflammatory mediators that are shown to be correlated with disease severity. For this purpose, we reviewed and analyzed clinical studies, research articles, and reviews published on PubMed, EMBASE, and Web of Science. This review illustrates the role of the innate and adaptive immune responses in SARS, MERS, and COVID-19 and identifies the general cytokine and chemokine profile in each of the three infections, focusing on the most prominent inflammatory mediators primarily responsible for the COVID-19 pathogenesis. The current treatment protocols or medications in clinical trials were reviewed while focusing on those targeting cytokines and chemokines. Altogether, the identified cytokines and chemokines profiles in SARS-CoV, MERS-CoV, and SARS-CoV-2 provide important information to better understand SARS-CoV-2 pathogenesis and highlight the importance of using prominent inflammatory mediators as markers for disease diagnosis and management. Our findings recommend that the use of immunosuppression cocktails provided to patients should be closely monitored and continuously assessed to maintain the desirable effects of cytokines and chemokines needed to fight the SARS, MERS, and COVID-19. The current gap in evidence is the lack of large clinical trials to determine the optimal and effective dosage and timing for a therapeutic regimen. Full article
(This article belongs to the Section SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

28 pages, 1695 KiB  
Review
Insights into COVID-19 Vaccine Development Based on Immunogenic Structural Proteins of SARS-CoV-2, Host Immune Responses, and Herd Immunity
by Jitendra Kumar Chaudhary, Rohitash Yadav, Pankaj Kumar Chaudhary, Anurag Maurya, Nimita Kant, Osamah Al Rugaie, Hoineiting Rebecca Haokip, Deepika Yadav, Rakesh Roshan, Ramasare Prasad, Apurva Chatrath, Dharmendra Singh, Neeraj Jain and Puneet Dhamija
Cells 2021, 10(11), 2949; https://doi.org/10.3390/cells10112949 - 29 Oct 2021
Cited by 30 | Viewed by 7571
Abstract
The first quarter of the 21st century has remarkably been characterized by a multitude of challenges confronting human society as a whole in terms of several outbreaks of infectious viral diseases, such as the 2003 severe acute respiratory syndrome (SARS), China; the 2009 [...] Read more.
The first quarter of the 21st century has remarkably been characterized by a multitude of challenges confronting human society as a whole in terms of several outbreaks of infectious viral diseases, such as the 2003 severe acute respiratory syndrome (SARS), China; the 2009 influenza H1N1, Mexico; the 2012 Middle East respiratory syndrome (MERS), Saudi Arabia; and the ongoing coronavirus disease 19 (COVID-19), China. COVID-19, caused by SARS-CoV-2, reportedly broke out in December 2019, Wuhan, the capital of China’s Hubei province, and continues unabated, leading to considerable devastation and death worldwide. The most common target organ of SARS-CoV-2 is the lungs, especially the bronchial and alveolar epithelial cells, culminating in acute respiratory distress syndrome (ARDS) in severe patients. Nevertheless, other tissues and organs are also known to be critically affected following infection, thereby complicating the overall aetiology and prognosis. Excluding H1N1, the SARS-CoV (also referred as SARS-CoV-1), MERS, and SARS-CoV-2 are collectively referred to as coronaviruses, and taxonomically placed under the realm Riboviria, order Nidovirales, suborder Cornidovirineae, family Coronaviridae, subfamily Orthocoronavirinae, genus Betacoronavirus, and subgenus Sarbecovirus. As of 23 September 2021, the ongoing SARS-CoV-2 pandemic has globally resulted in around 229 million and 4.7 million reported infections and deaths, respectively, apart from causing huge psychosomatic debilitation, academic loss, and deep economic recession. Such an unprecedented pandemic has compelled researchers, especially epidemiologists and immunologists, to search for SARS-CoV-2-associated potential immunogenic molecules to develop a vaccine as an immediate prophylactic measure. Amongst multiple structural and non-structural proteins, the homotrimeric spike (S) glycoprotein has been empirically found as the most suitable candidate for vaccine development owing to its immense immunogenic potential, which makes it capable of eliciting both humoral and cell-mediated immune responses. As a consequence, it has become possible to design appropriate, safe, and effective vaccines, apart from related therapeutic agents, to reduce both morbidity and mortality. As of 23 September 2021, four vaccines, namely, Comirnaty, COVID-19 vaccine Janssen, Spikevax, and Vaxzevria, have received the European Medicines Agency’s (EMA) approval, and around thirty are under the phase three clinical trial with emergency authorization by the vaccine-developing country-specific National Regulatory Authority (NRA). In addition, 100–150 vaccines are under various phases of pre-clinical and clinical trials. The mainstay of global vaccination is to introduce herd immunity, which would protect the majority of the population, including immunocompromised individuals, from infection and disease. Here, we primarily discuss category-wise vaccine development, their respective advantages and disadvantages, associated efficiency and potential safety aspects, antigenicity of SARS-CoV-2 structural proteins and immune responses to them along with the emergence of SARS-CoV-2 VOC, and the urgent need of achieving herd immunity to contain the pandemic. Full article
(This article belongs to the Collection Cellular Immunology and COVID-19)
Show Figures

Graphical abstract

23 pages, 1076 KiB  
Systematic Review
Relevance of CSF, Serum and Neuroimaging Markers in CNS and PNS Manifestation in COVID-19: A Systematic Review of Case Report and Case Series
by Sanjiti Podury, Samiksha Srivastava, Erum Khan, Mihir Kakara, Medha Tandon, Ashish K. Shrestha, Kerri Freeland, Sijin Wen and Shitiz Sriwastava
Brain Sci. 2021, 11(10), 1354; https://doi.org/10.3390/brainsci11101354 - 14 Oct 2021
Cited by 8 | Viewed by 3608
Abstract
Background: The data on neurological manifestations in COVID-19 patients has been rapidly increasing throughout the pandemic. However, data on CNS and PNS inflammatory disorders in COVID-19 with respect to CSF, serum and neuroimaging markers is still lacking. Methods: We screened all articles resulting [...] Read more.
Background: The data on neurological manifestations in COVID-19 patients has been rapidly increasing throughout the pandemic. However, data on CNS and PNS inflammatory disorders in COVID-19 with respect to CSF, serum and neuroimaging markers is still lacking. Methods: We screened all articles resulting from a search of PubMed, Google Scholar and Scopus, using the keywords “SARS-CoV-2 and neurological complication”, “SARS-CoV-2 and CNS Complication” and “SARS-CoV-2 and PNS Complication” looking for transverse myelitis, vasculitis, acute disseminated encephalomyelitis, acute hemorrhagic necrotizing encephalitis (AHNE), cytotoxic lesion of the corpus callosum (CLOCC) and Guillain-Barré syndrome (GBS), published between 1 December 2019 to 15 July 2021. Results: Of the included 106 CNS manifestations in our study, CNS inflammatory disorders included transverse myelitis (17, 14.7%), AHNE (12, 10.4%), ADEM (11, 9.5%), CLOCC/MERS (10, 8.6%) and vasculitis (4, 3.4%). Others were nonspecific encephalopathy, encephalitis, seizures and stroke. Most patients were >50 years old (75, 70.8%) and male (64, 65.3%). Most (59, 63.4%) were severe cases of COVID-19 and 18 (18%) patients died. Of the included 94 PNS manifestations in our study, GBS (89, 92.7%) was the most common. Most of these patients were >50 years old (73, 77.7%) and male (59, 64.1%). Most (62, 67.4%) were non-severe cases of COVID-19, and ten patients died. Conclusion: Our comprehensive review of the clinical and paraclinical findings in CNS and PNS manifestations of COVID-19 provide insights on the pathophysiology of SARS-CoV-2 and its neurotropism. The higher frequency and severity of CNS manifestations should be noted by physicians for increased vigilance in particular COVID-19 cases. Full article
(This article belongs to the Section Neurovirology)
Show Figures

Figure 1

39 pages, 6782 KiB  
Review
Overview of COVID-19 Disease: Virology, Epidemiology, Prevention Diagnosis, Treatment, and Vaccines
by Iman Salahshoori, Noushin Mobaraki-Asl, Ahmad Seyfaee, Nasrin Mirzaei Nasirabad, Zahra Dehghan, Mehrdad Faraji, Mina Ganjkhani, Aziz Babapoor, Seyede Zahra Shadmehr and Ali Hamrang
Biologics 2021, 1(1), 2-40; https://doi.org/10.3390/biologics1010002 - 12 May 2021
Cited by 22 | Viewed by 27155
Abstract
Coronaviruses belong to the “Coronaviridae family”, which causes various diseases, from the common cold to SARS and MERS. The coronavirus is naturally prevalent in mammals and birds. So far, six human-transmitted coronaviruses have been discovered. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was [...] Read more.
Coronaviruses belong to the “Coronaviridae family”, which causes various diseases, from the common cold to SARS and MERS. The coronavirus is naturally prevalent in mammals and birds. So far, six human-transmitted coronaviruses have been discovered. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in December 2019 in Wuhan, China. Common symptoms include fever, dry cough, and fatigue, but in acute cases, the disease can lead to severe shortness of breath, hypoxia, and death. According to the World Health Organization (WHO), the three main transmission routes, such as droplet and contact routes, airborne transmission and fecal and oral for COVID-19, have been identified. So far, no definitive curative treatment has been discovered for COVID-19, and the available treatments are only to reduce the complications of the disease. According to the World Health Organization, preventive measures at the public health level such as quarantine of the infected person, identification and monitoring of contacts, disinfection of the environment, and personal protective equipment can significantly prevent the outbreak COVID-19. Currently, based on the urgent needs of the community to control this pandemic, the BNT162b2 (Pfizer), mRNA-1273 (Moderna), CoronaVac (Sinovac), Sputnik V (Gamaleya Research Institute, Acellena Contract Drug Research, and Development), BBIBP-CorV (Sinofarm), and AZD1222 (The University of Oxford; AstraZeneca) vaccines have received emergency vaccination licenses from health organizations in vaccine-producing countries. Vasso Apostolopoulos, Majid Hassanzadeganroudsari Full article
(This article belongs to the Special Issue Anti-SARS-CoV-2/COVID-19 Drugs and Vaccines)
Show Figures

Figure 1

15 pages, 1262 KiB  
Review
Coronavirus Disease 2019 (COVID-19): A Brief Overview of Features and Current Treatment
by Montaha Al-Iede, Eman Badran, Manar Al-lawama, Amirah Daher, Enas Al-Zayadneh, Shereen M Aleidi, Taima Khawaldeh and Basim Alqutawneh
Adv. Respir. Med. 2021, 89(2), 158-172; https://doi.org/10.5603/ARM.a2021.0041 - 30 Apr 2021
Cited by 1 | Viewed by 1159
Abstract
Since the report of the first cases of pneumonia caused by SARS-CoV-2 in December 2019, COVID-19 has become a pandemic and is globally overwhelming healthcare systems. The symptoms of COVID-19 vary from asymptomatic infection to severe complicated pneumonia with acute respiratory distress syndrome [...] Read more.
Since the report of the first cases of pneumonia caused by SARS-CoV-2 in December 2019, COVID-19 has become a pandemic and is globally overwhelming healthcare systems. The symptoms of COVID-19 vary from asymptomatic infection to severe complicated pneumonia with acute respiratory distress syndrome (ARDS) and multiple organ failure leading to death. The estimated case-fatality rate among infected patients in Wuhan, the city where the first case appeared, was 1.4%, with 5.1 times increase in the death rate among those aged above 59 years than those aged 30–59 years. In the absence of a proven effective and licensed treatment, many agents that showed activity against previous coronavirus outbreaks such as SARS and MERS have been used to treat SARS-CoV-2 infection. The SARS-CoV-2 is reported to be 80% homologous with SARS-CoV, and some enzymes are almost 90% homologous. Antiviral drugs are urgently required to reduce case fatality-rate and hospitalizations to relieve the burden on healthcare systems worldwide. Randomized controlled trials are ongoing to assess the efficacy and safety of several treatment regimens. Full article
16 pages, 3013 KiB  
Article
MicroRNAs and Long Non-Coding RNAs as Potential Candidates to Target Specific Motifs of SARS-CoV-2
by Lucia Natarelli, Luca Parca, Tommaso Mazza, Christian Weber, Fabio Virgili and Deborah Fratantonio
Non-Coding RNA 2021, 7(1), 14; https://doi.org/10.3390/ncrna7010014 - 18 Feb 2021
Cited by 34 | Viewed by 7837
Abstract
The respiratory system is one of the most affected targets of SARS-CoV-2. Various therapies have been utilized to counter viral-induced inflammatory complications, with diverse success rates. Pending the distribution of an effective vaccine to the whole population and the achievement of “herd immunity”, [...] Read more.
The respiratory system is one of the most affected targets of SARS-CoV-2. Various therapies have been utilized to counter viral-induced inflammatory complications, with diverse success rates. Pending the distribution of an effective vaccine to the whole population and the achievement of “herd immunity”, the discovery of novel specific therapies is to be considered a very important objective. Here, we report a computational study demonstrating the existence of target motifs in the SARS-CoV-2 genome suitable for specific binding with endogenous human micro and long non-coding RNAs (miRNAs and lncRNAs, respectively), which can, therefore, be considered a conceptual background for the development of miRNA-based drugs against COVID-19. The SARS-CoV-2 genome contains three motifs in the 5′UTR leader sequence recognized by selective nucleotides within the seed sequence of specific human miRNAs. The seed of 57 microRNAs contained a “GGG” motif that promoted leader sequence-recognition, primarily through offset-6mer sites able to promote microRNAs noncanonical binding to viral RNA. Similarly, lncRNA H19 binds to the 5′UTR of the viral genome and, more specifically, to the transcript of the viral gene Spike, which has a pivotal role in viral infection. Notably, some of the non-coding RNAs identified in our study as candidates for inhibiting SARS-CoV-2 gene expression have already been proposed against diverse viral infections, pulmonary arterial hypertension, and related diseases. Full article
(This article belongs to the Special Issue RNA Therapeutics: From Concepts to Applications)
Show Figures

Graphical abstract

20 pages, 6295 KiB  
Article
Targeting the Complement Serine Protease MASP-2 as a Therapeutic Strategy for Coronavirus Infections
by Ben M. Flude, Giulio Nannetti, Paige Mitchell, Nina Compton, Chloe Richards, Meike Heurich, Andrea Brancale, Salvatore Ferla and Marcella Bassetto
Viruses 2021, 13(2), 312; https://doi.org/10.3390/v13020312 - 17 Feb 2021
Cited by 21 | Viewed by 5748
Abstract
MASP-2, mannose-binding protein-associated serine protease 2, is a key enzyme in the lectin pathway of complement activation. Hyperactivation of this protein by human coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2 has been found to contribute to aberrant complement activation in patients, leading to aggravated lung [...] Read more.
MASP-2, mannose-binding protein-associated serine protease 2, is a key enzyme in the lectin pathway of complement activation. Hyperactivation of this protein by human coronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2 has been found to contribute to aberrant complement activation in patients, leading to aggravated lung injury with potentially fatal consequences. This hyperactivation is triggered in the lungs through a conserved, direct interaction between MASP-2 and coronavirus nucleocapsid (N) proteins. Blocking this interaction with monoclonal antibodies and interfering directly with the catalytic activity of MASP-2, have been found to alleviate coronavirus-induced lung injury both in vitro and in vivo. In this study, a virtual library of 8736 licensed drugs and clinical agents has been screened in silico according to two parallel strategies. The first strategy aims at identifying direct inhibitors of MASP-2 catalytic activity, while the second strategy focusses on finding protein-protein interaction inhibitors (PPIs) of MASP-2 and coronaviral N proteins. Such agents could represent promising support treatment options to prevent lung injury and reduce mortality rates of infections caused by both present and future-emerging coronaviruses. Forty-six drug repurposing candidates were purchased and, for the ones selected as potential direct inhibitors of MASP-2, a preliminary in vitro assay was conducted to assess their interference with the lectin pathway of complement activation. Some of the tested agents displayed a dose-response inhibitory activity of the lectin pathway, potentially providing the basis for a viable support strategy to prevent the severe complications of coronavirus infections. Full article
(This article belongs to the Special Issue Drug-Repositioning Opportunities for Antiviral Therapy)
Show Figures

Figure 1

15 pages, 2597 KiB  
Review
The Central Role of Fibrinolytic Response in COVID-19—A Hematologist’s Perspective
by Hau C. Kwaan and Paul F. Lindholm
Int. J. Mol. Sci. 2021, 22(3), 1283; https://doi.org/10.3390/ijms22031283 - 28 Jan 2021
Cited by 37 | Viewed by 7095
Abstract
The novel coronavirus disease (COVID-19) has many characteristics common to those in two other coronavirus acute respiratory diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). They are all highly contagious and have severe pulmonary complications. Clinically, patients with COVID-19 [...] Read more.
The novel coronavirus disease (COVID-19) has many characteristics common to those in two other coronavirus acute respiratory diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). They are all highly contagious and have severe pulmonary complications. Clinically, patients with COVID-19 run a rapidly progressive course of an acute respiratory tract infection with fever, sore throat, cough, headache and fatigue, complicated by severe pneumonia often leading to acute respiratory distress syndrome (ARDS). The infection also involves other organs throughout the body. In all three viral illnesses, the fibrinolytic system plays an active role in each phase of the pathogenesis. During transmission, the renin-aldosterone-angiotensin-system (RAAS) is involved with the spike protein of SARS-CoV-2, attaching to its natural receptor angiotensin-converting enzyme 2 (ACE 2) in host cells. Both tissue plasminogen activator (tPA) and plasminogen activator inhibitor 1 (PAI-1) are closely linked to the RAAS. In lesions in the lung, kidney and other organs, the two plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator (tPA), along with their inhibitor, plasminogen activator 1 (PAI-1), are involved. The altered fibrinolytic balance enables the development of a hypercoagulable state. In this article, evidence for the central role of fibrinolysis is reviewed, and the possible drug targets at multiple sites in the fibrinolytic pathways are discussed. Full article
(This article belongs to the Special Issue The Role of Fibrinolytic System in Health and Disease)
Show Figures

Figure 1

36 pages, 934 KiB  
Review
Targeting the SphK-S1P-SIPR Pathway as a Potential Therapeutic Approach for COVID-19
by Eileen M McGowan, Nahal Haddadi, Najah T. Nassif and Yiguang Lin
Int. J. Mol. Sci. 2020, 21(19), 7189; https://doi.org/10.3390/ijms21197189 - 29 Sep 2020
Cited by 40 | Viewed by 6770
Abstract
The world is currently experiencing the worst health pandemic since the Spanish flu in 1918—the COVID-19 pandemic—caused by the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic is the world’s third wake-up call this century. In 2003 and 2012, the world [...] Read more.
The world is currently experiencing the worst health pandemic since the Spanish flu in 1918—the COVID-19 pandemic—caused by the coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic is the world’s third wake-up call this century. In 2003 and 2012, the world experienced two major coronavirus outbreaks, SARS-CoV-1 and Middle East Respiratory syndrome coronavirus (MERS-CoV), causing major respiratory tract infections. At present, there is neither a vaccine nor a cure for COVID-19. The severe COVID-19 symptoms of hyperinflammation, catastrophic damage to the vascular endothelium, thrombotic complications, septic shock, brain damage, acute disseminated encephalomyelitis (ADEM), and acute neurological and psychiatric complications are unprecedented. Many COVID-19 deaths result from the aftermath of hyperinflammatory complications, also referred to as the “cytokine storm syndrome”, endotheliitus and blood clotting, all with the potential to cause multiorgan dysfunction. The sphingolipid rheostat plays integral roles in viral replication, activation/modulation of the immune response, and importantly in maintaining vasculature integrity, with sphingosine 1 phosphate (S1P) and its cognate receptors (SIPRs: G-protein-coupled receptors) being key factors in vascular protection against endotheliitus. Hence, modulation of sphingosine kinase (SphK), S1P, and the S1P receptor pathway may provide significant beneficial effects towards counteracting the life-threatening, acute, and chronic complications associated with SARS-CoV-2 infection. This review provides a comprehensive overview of SARS-CoV-2 infection and disease, prospective vaccines, and current treatments. We then discuss the evidence supporting the targeting of SphK/S1P and S1P receptors in the repertoire of COVID-19 therapies to control viral replication and alleviate the known and emerging acute and chronic symptoms of COVID-19. Three clinical trials using FDA-approved sphingolipid-based drugs being repurposed and evaluated to help in alleviating COVID-19 symptoms are discussed. Full article
Show Figures

Figure 1

Back to TopTop