Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = MCHR1 antagonists

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 41691 KB  
Article
Identification and New Indication of Melanin-Concentrating Hormone Receptor 1 (MCHR1) Antagonist Derived from Machine Learning and Transcriptome-Based Drug Repositioning Approaches
by Gyutae Lim, Ka Young You, Jeong Hyun Lee, Moon Kook Jeon, Byung Ho Lee, Jae Yong Ryu and Kwang-Seok Oh
Int. J. Mol. Sci. 2022, 23(7), 3807; https://doi.org/10.3390/ijms23073807 - 30 Mar 2022
Cited by 8 | Viewed by 4114
Abstract
Melanin-concentrating hormone receptor 1 (MCHR1) has been a target for appetite suppressants, which are helpful in treating obesity. However, it is challenging to develop an MCHR1 antagonist because its binding site is similar to that of the human Ether-à-go-go-Related Gene (hERG) channel, whose [...] Read more.
Melanin-concentrating hormone receptor 1 (MCHR1) has been a target for appetite suppressants, which are helpful in treating obesity. However, it is challenging to develop an MCHR1 antagonist because its binding site is similar to that of the human Ether-à-go-go-Related Gene (hERG) channel, whose inhibition may cause cardiotoxicity. Most drugs developed as MCHR1 antagonists have failed in clinical development due to cardiotoxicity caused by hERG inhibition. Machine learning-based prediction models can overcome these difficulties and provide new opportunities for drug discovery. In this study, we identified KRX-104130 with potent MCHR1 antagonistic activity and no cardiotoxicity through virtual screening using two MCHR1 binding affinity prediction models and an hERG-induced cardiotoxicity prediction model. In addition, we explored other possibilities for expanding the new indications for KRX-104130 using a transcriptome-based drug repositioning approach. KRX-104130 increased the expression of low-density lipoprotein receptor (LDLR), which induced cholesterol reduction in the gene expression analysis. This was confirmed by comparison with gene expression in a nonalcoholic steatohepatitis (NASH) patient group. In a NASH mouse model, the administration of KRX-104130 showed a protective effect by reducing hepatic lipid accumulation, liver injury, and histopathological changes, indicating a promising prospect for the therapeutic effect of NASH as a new indication for MCHR1 antagonists. Full article
Show Figures

Figure 1

28 pages, 2915 KB  
Article
MCH-R1 Antagonist GPS18169, a Pseudopeptide, Is a Peripheral Anti-Obesity Agent in Mice
by Jean A. Boutin, Magali Jullian, Lukasz Frankiewicz, Mathieu Galibert, Philippe Gloanec, Thierry Le Diguarher, Philippe Dupuis, Amber Ko, Laurent Ripoll, Marc Bertrand, Anne Pecquery, Gilles Ferry and Karine Puget
Molecules 2021, 26(5), 1291; https://doi.org/10.3390/molecules26051291 - 27 Feb 2021
Cited by 8 | Viewed by 4318
Abstract
Melanin-concentrating hormone (MCH) is a 19 amino acid long peptide found in the brain of animals, including fishes, batrachians, and mammals. MCH is implicated in appetite and/or energy homeostasis. Antagonists at its receptor (MCH-R1) could be major tools (or ultimately drugs) to understand [...] Read more.
Melanin-concentrating hormone (MCH) is a 19 amino acid long peptide found in the brain of animals, including fishes, batrachians, and mammals. MCH is implicated in appetite and/or energy homeostasis. Antagonists at its receptor (MCH-R1) could be major tools (or ultimately drugs) to understand the mechanism of MCH action and to fight the obesity syndrome that is a worldwide societal health problem. Ever since the deorphanisation of the MCH receptor, we cloned, expressed, and characterized the receptor MCH-R1 and started a vast medicinal chemistry program aiming at the discovery of such usable compounds. In the present final work, we describe GPS18169, a pseudopeptide antagonist at the MCH-R1 receptor with an affinity in the nanomolar range and a Ki for its antagonistic effect in the 20 picomolar range. Its metabolic stability is rather ameliorated compared to its initial parent compound, the antagonist S38151. We tested it in an in vivo experiment using high diet mice. GPS18169 was found to be active in limiting the accumulation of adipose tissues and, correlatively, we observed a normalization of the insulin level in the treated animals, while no change in food or water consumption was observed. Full article
(This article belongs to the Special Issue Neuropeptides: From Physiology to Therapeutic Applications)
Show Figures

Figure 1

28 pages, 3388 KB  
Article
Profiling the Interaction Mechanism of Quinoline/Quinazoline Derivatives as MCHR1 Antagonists: An in Silico Method
by Mingwei Wu, Yan Li, Xinmei Fu, Jinghui Wang, Shuwei Zhang and Ling Yang
Int. J. Mol. Sci. 2014, 15(9), 15475-15502; https://doi.org/10.3390/ijms150915475 - 1 Sep 2014
Cited by 9 | Viewed by 7059
Abstract
Melanin concentrating hormone receptor 1 (MCHR1), a crucial regulator of energy homeostasis involved in the control of feeding and energy metabolism, is a promising target for treatment of obesity. In the present work, the up-to-date largest set of 181 quinoline/quinazoline derivatives as MCHR1 [...] Read more.
Melanin concentrating hormone receptor 1 (MCHR1), a crucial regulator of energy homeostasis involved in the control of feeding and energy metabolism, is a promising target for treatment of obesity. In the present work, the up-to-date largest set of 181 quinoline/quinazoline derivatives as MCHR1 antagonists was subjected to both ligand- and receptor-based three-dimensional quantitative structure–activity (3D-QSAR) analysis applying comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The optimal predictable CoMSIA model exhibited significant validity with the cross-validated correlation coefficient (Q2) = 0.509, non-cross-validated correlation coefficient (R2ncv) = 0.841 and the predicted correlation coefficient (R2pred) = 0.745. In addition, docking studies and molecular dynamics (MD) simulations were carried out for further elucidation of the binding modes of MCHR1 antagonists. MD simulations in both water and lipid bilayer systems were performed. We hope that the obtained models and information may help to provide an insight into the interaction mechanism of MCHR1 antagonists and facilitate the design and optimization of novel antagonists as anti-obesity agents. Full article
(This article belongs to the Section Physical Chemistry, Theoretical and Computational Chemistry)
Show Figures

Figure 1

25 pages, 589 KB  
Article
Syntheses of Precursors and Reference Compounds of the Melanin-Concentrating Hormone Receptor 1 (MCHR1) Tracers [11C]SNAP-7941 and [18F]FE@SNAP for Positron Emission Tomography
by Eva Schirmer, Karem Shanab, Barbara Datterl, Catharina Neudorfer, Markus Mitterhauser, Wolfgang Wadsak, Cécile Philippe and Helmut Spreitzer
Molecules 2013, 18(10), 12119-12143; https://doi.org/10.3390/molecules181012119 - 30 Sep 2013
Cited by 7 | Viewed by 6220
Abstract
The MCH receptor has been revealed as a target of great interest in positron emission tomography imaging. The receptor′s eponymous substrate melanin-concentrating hormone (MCH) is a cyclic peptide hormone, which is located predominantly in the hypothalamus with a major influence on energy and [...] Read more.
The MCH receptor has been revealed as a target of great interest in positron emission tomography imaging. The receptor′s eponymous substrate melanin-concentrating hormone (MCH) is a cyclic peptide hormone, which is located predominantly in the hypothalamus with a major influence on energy and weight regulation as well as water balance and memory. Therefore, it is thought to play an important role in the pathophysiology of adiposity, which is nowadays a big issue worldwide. Based on the selective and high-affinity MCH receptor 1 antagonist SNAP-7941, a series of novel SNAP derivatives has been developed to provide different precursors and reference compounds for the radiosyntheses of the novel PET radiotracers [11C]SNAP-7941 and [18F]FE@SNAP. Positron emission tomography promotes a better understanding of physiologic parameters on a molecular level, thus giving a deeper insight into MCHR1 related processes as adiposity. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop