Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = MAPK/NF-ĸB

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8725 KiB  
Article
Candida utilis Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice via NF-κB/MAPK Suppression and Gut Microbiota Modulation
by Rongxin Zang, Zhouliang Liu, Huihao Wu, Wenyan Chen, Rui Zhou, Fazheng Yu, Yaodong Li and Hongwei Xu
Int. J. Mol. Sci. 2025, 26(5), 1993; https://doi.org/10.3390/ijms26051993 - 25 Feb 2025
Viewed by 818
Abstract
Candida utilis (CUM) possesses various biological effects, including anti-inflammatory, intestinal microbiota regulatory, and immunomodulatory activities. However, there has been little exploration regarding the effects of CUM on ulcerative colitis (UC). Therefore, this study aimed to investigate the beneficial effects of CUM on alleviating [...] Read more.
Candida utilis (CUM) possesses various biological effects, including anti-inflammatory, intestinal microbiota regulatory, and immunomodulatory activities. However, there has been little exploration regarding the effects of CUM on ulcerative colitis (UC). Therefore, this study aimed to investigate the beneficial effects of CUM on alleviating dextran sulfate sodium (DSS)-induced UC in mice and to explore the potential underlying mechanisms. Here, the effect of CUM on UC was analyzed using a DSS-induced colitis mouse model (n = 9), the results of which indicated a decrease in disease activity index (DAI) in DSS-induced UC mice. Furthermore, CUM alleviated colon shortening, minimized intestinal tissue damage, and preserved intestinal tight junction proteins (Claudin-3, Occludin, and ZO-1). CUM reduced the level of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), inhibited the activation of the NF-ĸB, MAPK and PPARγ signaling pathways, and decreased the level of oxidative mediators (MPO, SOD and MDA) in the colon of UC mice. Additionally, it mitigated the dysbiosis of intestinal microbiota in UC mice by increasing the abundance of Prevotellaceae and Lactobacillus while decreasing the abundance of Bacteroidaceae and Enterobacteriaceae. CUM alleviated the decrease in short-chain fatty acids (SCFAs) content in the colon of UC mice. The above results provide a scientific basis for CUM, as a natural supplement, to restore the balance of the gut inflammatory microbiota and promote gut health. Full article
(This article belongs to the Special Issue The Role of Tight Junction Proteins in Health and Disease)
Show Figures

Figure 1

15 pages, 1351 KiB  
Article
Gestational Diabetes Mellitus-Induced Inflammation in the Placenta via IL-1β and Toll-like Receptor Pathways
by Katarzyna Zgutka, Marta Tkacz, Patrycja Tomasiak, Katarzyna Piotrowska, Przemysław Ustianowski, Andrzej Pawlik and Maciej Tarnowski
Int. J. Mol. Sci. 2024, 25(21), 11409; https://doi.org/10.3390/ijms252111409 - 23 Oct 2024
Cited by 7 | Viewed by 1950
Abstract
Gestational diabetes mellitus is characterised by an insufficient insulin response to hyperglycaemia and the development of insulin resistance. This state has adverse effects on the health outcomes of the mother and child. Existing hyperglycaemia triggers a state of inflammation that involves several tissues, [...] Read more.
Gestational diabetes mellitus is characterised by an insufficient insulin response to hyperglycaemia and the development of insulin resistance. This state has adverse effects on the health outcomes of the mother and child. Existing hyperglycaemia triggers a state of inflammation that involves several tissues, including the placenta. In this study, we analysed the putative pathomechanism of GDM, with special emphasis on the role of chronic, sterile, pro-inflammatory pathways. The expression and regulation of the elements of IL-1β and Toll-like receptor (TLR) pathways in GDM maternal blood plasma, healthy placental explants and a choriocarcinoma cell line (BeWo cell line) stimulated with pro-inflammatory factors was evaluated. Our results indicate elevated expression of the IL-1β and TLR pathways in GDM patients. After stimulation with IL-1β or LPS, the placental explants and BeWo cell line showed increased production of pro-inflammatory IL-6, TNFa and IL-1β together with increased expression of the elements of the signalling pathways. The application of selected inhibitors of NF-ĸB, MAPK and recombinant interleukin 1 receptor antagonist (IL1RA) proved the key involvement of the IL-1β pathway and TLRs in the pathogenesis of GDM. Our results show the possible existence of loops of autocrine stimulation and a possible inflammatory pathomechanism in placentas affected by GDM. Full article
(This article belongs to the Special Issue Molecular Insight into Gestational Diabetes Mellitus)
Show Figures

Figure 1

18 pages, 3513 KiB  
Article
Cystathionine Gamma-Lyase Regulates TNF-α-Mediated Injury Response in Human Colonic Epithelial Cells and Colonoids
by Francisco Arroyo Almenas, Gábor Törő, Peter Szaniszlo, Manjit Maskey, Ketan K. Thanki, Walter A. Koltun, Gregory S. Yochum, Irina V. Pinchuk, Celia Chao, Mark R. Hellmich and Katalin Módis
Antioxidants 2024, 13(9), 1067; https://doi.org/10.3390/antiox13091067 - 31 Aug 2024
Cited by 1 | Viewed by 1556
Abstract
Cystathionine gamma-lyase (CSE) and TNF-α are now recognized as key regulators of intestinal homeostasis, inflammation, and wound healing. In colonic epithelial cells, both molecules have been shown to influence a variety of biological processes, but the specific interactions between intracellular signaling pathways regulated [...] Read more.
Cystathionine gamma-lyase (CSE) and TNF-α are now recognized as key regulators of intestinal homeostasis, inflammation, and wound healing. In colonic epithelial cells, both molecules have been shown to influence a variety of biological processes, but the specific interactions between intracellular signaling pathways regulated by CSE and TNF-α are poorly understood. In the present study, we investigated these interactions in normal colonocytes and an organoid model of the healthy human colon using CSE-specific pharmacological inhibitors and siRNA-mediated transient gene silencing in analytical and functional assays in vitro. We demonstrated that CSE and TNF-α mutually regulated each other’s functions in colonic epithelial cells. TNF-α treatment stimulated CSE activity within minutes and upregulated CSE expression after 24 h, increasing endogenous CSE-derived H2S production. In turn, CSE activity promoted TNF-α-induced NF-ĸB and ERK1/2 activation but did not affect the p38 MAPK signaling pathway. Inhibition of CSE activity completely abolished the TNF-α-induced increase in transepithelial permeability and wound healing. Our data suggest that CSE activity may be essential for effective TNF-α-mediated intestinal injury response. Furthermore, CSE regulation of TNF-α-controlled intracellular signaling pathways could provide new therapeutic targets in diseases of the colon associated with impaired epithelial wound healing. Full article
(This article belongs to the Special Issue Hydrogen Sulfide Signaling in Biological Systems)
Show Figures

Figure 1

12 pages, 2268 KiB  
Article
Loliolide in Sargassum horneri Alleviates Ultrafine Urban Particulate Matter (PM 0.1)-Induced Inflammation in Human RPE Cells
by Eun Jeoung Lee, Sol Lee, Hyun-Jae Jang and Wonbeak Yoo
Int. J. Mol. Sci. 2024, 25(1), 162; https://doi.org/10.3390/ijms25010162 - 21 Dec 2023
Cited by 1 | Viewed by 1776
Abstract
Owing to increasing air pollution due to industrial development, fine dust has been associated with threatening public health. In particular, ultrafine urban particulate matter (uf-UP, PM 0.1) can easily enter our bodies, causing inflammation-related diseases. Therefore, in the present study, we evaluated the [...] Read more.
Owing to increasing air pollution due to industrial development, fine dust has been associated with threatening public health. In particular, ultrafine urban particulate matter (uf-UP, PM 0.1) can easily enter our bodies, causing inflammation-related diseases. Therefore, in the present study, we evaluated the effects of hydrothermal extracts of Sargassum horneri and its bioactive compound, loliolide, on uf-UP-induced inflammation as a potential treatment strategy for retinal disorders. Human retinal pigment epithelial cells (ARPE-19) stimulated with TNF-α or uf-UPs were treated with S. horneri extract and loliolide. S. horneri extracts exhibited anti-inflammatory effects on uf-UP-induced inflammation without cell toxicity through downregulating the mRNA expression of MCP-1, IL-8, IL-6, and TNF-α. UPLC-QTOF/MS analysis confirmed that the hydrothermal extract of S. horneri contained loliolide, which has anti-inflammatory effects. Loliolide effectively reduced the mRNA expression and production of proinflammatory chemokines (IL-8) and cytokines (IL-1β and IL-6) by downregulating the MAPK/NF-ĸB signaling pathway on TNF-α-stimulated inflammatory ARPE-19 cells. These effects were further confirmed in inflammatory ARPE-19 cells after stimulation with uf-UPs. Collectively, these results suggested the application of S. horneri as a functional ingredient for treating ocular disorders caused by particular matters. Full article
Show Figures

Figure 1

12 pages, 2487 KiB  
Article
Anti-Inflammatory Activity of 1,6,7-Trihydroxy-2-(1,1-dimethyl-2-propenyl)-3-methoxyxanthone Isolated from Cudrania tricuspidata via NF-κB, MAPK, and HO-1 Signaling Pathways in Lipopolysaccharide-Stimulated RAW 264.7 and BV2 Cells
by Wonmin Ko, Jong-Suep Baek, Zhiming Liu, Linsha Dong, Nayeon Kim, Hwan Lee, Chi-Su Yoon, Na Young Kim, Sam Cheol Kim and Dong-Sung Lee
Molecules 2023, 28(21), 7299; https://doi.org/10.3390/molecules28217299 - 27 Oct 2023
Cited by 3 | Viewed by 1803
Abstract
Neuroinflammation activated by microglia affects inflammatory pain development. This study aimed to explore the anti-inflammatory properties and mechanisms of 1,6,7-trihydroxy-2-(1,1-dimethyl-2-propenyl)-3-methoxyxanthone (THMX) from Cudrania tricuspidata in microglia activation-mediated inflammatory pain. In RAW 264.7 and BV2 cells, THMX has been shown to reduce lipopolysaccharide (LPS)-induced [...] Read more.
Neuroinflammation activated by microglia affects inflammatory pain development. This study aimed to explore the anti-inflammatory properties and mechanisms of 1,6,7-trihydroxy-2-(1,1-dimethyl-2-propenyl)-3-methoxyxanthone (THMX) from Cudrania tricuspidata in microglia activation-mediated inflammatory pain. In RAW 264.7 and BV2 cells, THMX has been shown to reduce lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory mediators and cytokines, including nitric oxide (NO), prostaglandin (PG) E2, interleukin (IL)-6, and tumor necrosis factor alpha (TNF-α). THMX also decreased LPS-induced phosphorylation of mitogen-activated protein kinase (MAPK) and the activation of p65 nuclear factor kappa B (NF-κB). Interestingly, THMX also activated heme oxygenase (HO)-1 expression. These findings suggest that THMX is a promising biologically active compound against inflammation through preventing MAPKs and NF-ĸB and activating HO-1 signaling pathways. Full article
Show Figures

Figure 1

20 pages, 1674 KiB  
Review
Changes of Signaling Pathways in Hypothalamic Neurons with Aging
by Petr M. Masliukov
Curr. Issues Mol. Biol. 2023, 45(10), 8289-8308; https://doi.org/10.3390/cimb45100523 - 12 Oct 2023
Cited by 4 | Viewed by 3230
Abstract
The hypothalamus is an important regulator of autonomic and endocrine functions also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular signaling including insulin/insulin-like growth factor-1 (IGF-1)/growth hormone (GH), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/the mammalian target [...] Read more.
The hypothalamus is an important regulator of autonomic and endocrine functions also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular signaling including insulin/insulin-like growth factor-1 (IGF-1)/growth hormone (GH), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/the mammalian target of rapamycin (mTOR), mitogen activated protein kinase (MAPK), janus kinase (JAK)/signal transducer and activator of transcription (STAT), AMP-activated protein kinase (AMPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), and nitric oxide (NO). In the current review, I have summarized the current understanding of the changes in the above-mentioned pathways in aging with a focus on hypothalamic alterations. Full article
(This article belongs to the Collection Feature Papers in Current Issues in Molecular Biology)
Show Figures

Graphical abstract

18 pages, 3492 KiB  
Article
Sodium Propionate Relieves LPS-Induced Inflammation by Suppressing the NF-ĸB and MAPK Signaling Pathways in Rumen Epithelial Cells of Holstein Cows
by Chenxu Zhao, Fanxuan Yi, Bo Wei, Panpan Tan, Yan Huang, Fangyuan Zeng, Yazhou Wang, Chuang Xu and Jianguo Wang
Toxins 2023, 15(7), 438; https://doi.org/10.3390/toxins15070438 - 3 Jul 2023
Cited by 4 | Viewed by 2770
Abstract
Subacute ruminal acidosis (SARA) is a prevalent disease in intensive dairy farming, and the rumen environment of diseased cows acidifies, leading to the rupture of gram-negative bacteria to release lipopolysaccharide (LPS). LPS can cause rumentitis and other complications, such as liver abscess, mastitis [...] Read more.
Subacute ruminal acidosis (SARA) is a prevalent disease in intensive dairy farming, and the rumen environment of diseased cows acidifies, leading to the rupture of gram-negative bacteria to release lipopolysaccharide (LPS). LPS can cause rumentitis and other complications, such as liver abscess, mastitis and laminitis. Propionate, commonly used in the dairy industry as a feed additive, has anti-inflammatory effects, but its mechanism is unclear. This study aims to investigate whether sodium propionate (SP) reduces LPS-induced inflammation in rumen epithelial cells (RECs) and the underlying mechanism. RECs were stimulated with different time (0, 1, 3, 6, 9, 18 h) and different concentrations of LPS (0, 1, 5, 10 μg/mL) to establish an inflammation model. Then, RECs were treated with SP (15, 25, 35 mM) or 10 μM PDTC in advance and stimulated by LPS for the assessment. The results showed that LPS (6h and 10 μg/mL) could stimulate the phosphorylation of NF-κB p65, IκB, JNK, ERK and p38 MAPK through TLR4, and increase the release of TNF-α, IL-1β and IL-6. SP (35 mM) can reduce the expression of cytokines by effectively inhibiting the NF-κB and MAPK inflammatory pathways. This study confirmed that SP inhibited LPS-induced inflammatory responses through NF-κB and MAPK in RECs, providing potential therapeutic targets and drugs for the prevention and treatment of SARA. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

20 pages, 3211 KiB  
Review
Synthetic Pathways and the Therapeutic Potential of Quercetin and Curcumin
by Aseel Ali Hasan, Victor Tatarskiy and Elena Kalinina
Int. J. Mol. Sci. 2022, 23(22), 14413; https://doi.org/10.3390/ijms232214413 - 20 Nov 2022
Cited by 39 | Viewed by 7027
Abstract
Polyphenols are considered popular ingredients in the pharmaceutical and medical fields due to their preventive and therapeutic properties. However, the potential effects and mechanisms of action of individual polyphenols remain largely unknown. Herein, we analyzed recent data on the synthetic pathways, features, and [...] Read more.
Polyphenols are considered popular ingredients in the pharmaceutical and medical fields due to their preventive and therapeutic properties. However, the potential effects and mechanisms of action of individual polyphenols remain largely unknown. Herein, we analyzed recent data on the synthetic pathways, features, and similarity of the properties of quercetin, as the most famous flavonoid, and curcumin, a representative of curcuminoids that despite their anti-oxidant activity, also have a pro-oxidant effect, depending on the concentration and the cellular environment. This review focuses on an analysis of their anti-cancer efficacy against various cancer cell lines via cell cycle arrest (regulation of p53/p21 and CDK/cyclins) and by triggering the mitochondrial intrinsic (Bcl-2/Bax/caspase 9) apoptotic pathway, as well as through the modulation of the signaling pathways (PI3K/Akt, Wnt/β-catenin, JAK/STAT, MAPK, p53, and NF-ĸB) and their influence on the non-coding RNAs involved in angiogenesis, invasion, migration, and metastasis. The therapeutic potential of quercetin and curcumin is discussed not only on the basis of their anti-cancer effects, but also with regard to their anti-diabetic, anti-obesity, anti-inflammatory, and anti-bacterial actions. Full article
(This article belongs to the Special Issue Therapeutic Effects of Plant Based Bioactive Compounds on Cancer 2.0)
Show Figures

Figure 1

26 pages, 5906 KiB  
Review
Carotenoids from Marine Microalgae as Antimelanoma Agents
by Christiane Adrielly Alves Ferraz, Raphaël Grougnet, Elodie Nicolau, Laurent Picot and Raimundo Gonçalves de Oliveira Junior
Mar. Drugs 2022, 20(10), 618; https://doi.org/10.3390/md20100618 - 29 Sep 2022
Cited by 13 | Viewed by 3995
Abstract
Melanoma cells are highly invasive and metastatic tumor cells and commonly express molecular alterations that contribute to multidrug resistance (e.g., BRAFV600E mutation). Conventional treatment is not effective in a long term, requiring an exhaustive search for new alternatives. Recently, carotenoids from microalgae [...] Read more.
Melanoma cells are highly invasive and metastatic tumor cells and commonly express molecular alterations that contribute to multidrug resistance (e.g., BRAFV600E mutation). Conventional treatment is not effective in a long term, requiring an exhaustive search for new alternatives. Recently, carotenoids from microalgae have been investigated as adjuvant in antimelanoma therapy due to their safety and acceptable clinical tolerability. Many of them are currently used as food supplements. In this review, we have compiled several studies that show microalgal carotenoids inhibit cell proliferation, cell migration and invasion, as well as induced cell cycle arrest and apoptosis in various melanoma cell lines. MAPK and NF-ĸB pathway, MMP and apoptotic factors are frequently affected after exposure to microalgal carotenoids. Fucoxanthin, astaxanthin and zeaxanthin are the main carotenoids investigated, in both in vitro and in vivo experimental models. Preclinical data indicate these compounds exhibit direct antimelanoma effect but are also capable of restoring melanoma cells sensitivity to conventional chemotherapy (e.g., vemurafenib and dacarbazine). Full article
(This article belongs to the Special Issue Development and Application of Marine-Derived Anti-cancer Agents)
Show Figures

Graphical abstract

16 pages, 4058 KiB  
Article
Vincamine Modulates the Effect of Pantoprazole in Renal Ischemia/Reperfusion Injury by Attenuating MAPK and Apoptosis Signaling Pathways
by Michael A. Fawzy, Sherif A. Maher, Mahmoud A. El-Rehany, Nermeen N. Welson, Nisreen K. A. Albezrah, Gaber El-Saber Batiha and Moustafa Fathy
Molecules 2022, 27(4), 1383; https://doi.org/10.3390/molecules27041383 - 18 Feb 2022
Cited by 35 | Viewed by 3207
Abstract
Pantoprazole has an antioxidant function against reactive oxygen species (ROS). Vincamine, a herbal candidate, is an indole alkaloid of clinical use against brain sclerosis. The aim of the present experiment is to evaluate, on a molecular level for the first time, the value [...] Read more.
Pantoprazole has an antioxidant function against reactive oxygen species (ROS). Vincamine, a herbal candidate, is an indole alkaloid of clinical use against brain sclerosis. The aim of the present experiment is to evaluate, on a molecular level for the first time, the value of vincamine in addition to pantoprazole in treating experimentally induced renal ischemia/reperfusion injury (IRI). One-hundred-and-twenty-eight healthy male Wistar albino rats were included. Serum creatinine, blood urea nitrogen, and malondialdehyde levels were assessed. ELISA was used to estimate the pro-inflammatory cytokines. The expression of Bcl-2 and Bax genes was assessed by quantitative real-time PCR. ERK1/2, JNK1/2, p38, cleaved caspase-3, and NF-κB proteins expressions were estimated using western blot assay. The kidneys were also histopathologically studied. The IRI resulted in impaired cellular functions with increased creatinine, urea nitrogen, malondialdehyde, TNF-α, IL-6, and IL-1β serum levels, and up-regulated NF-ĸB, JNK1/2, ERK1/2, p38, and cleaved caspase-3 proteins. Furthermore, it down-regulated the expression of the Bcl-2 gene and upregulated the Bax gene. The treatment with vincamine, in addition to pantoprazole multiple doses, significantly alleviated the biochemical and histopathological changes more than pantoprazole or vincamine alone, whether the dose is single or multiple, declaring their synergistic effect. In conclusion, vincamine with pantoprazole multiple doses mitigated the renal IRI through the inhibition of apoptosis, attenuation of the extracellular signaling pathways through proinflammatory cytokines’ levels, and suppression of the MAPK (ERK1/2, JNK, p38)–NF-κB intracellular signaling pathway. Full article
Show Figures

Figure 1

18 pages, 2738 KiB  
Article
Ferulic Acid Metabolites Attenuate LPS-Induced Inflammatory Response in Enterocyte-like Cells
by Gabriele Serreli, Micaela Rita Naitza, Sonia Zodio, Vera Piera Leoni, Martina Spada, Maria Paola Melis, Anna Boronat and Monica Deiana
Nutrients 2021, 13(9), 3152; https://doi.org/10.3390/nu13093152 - 10 Sep 2021
Cited by 28 | Viewed by 3982
Abstract
Ferulic acid (FA) is a polyphenol pertaining to the class of hydroxycinnamic acids present in numerous foods of a plant origin. Its dietary consumption leads to the formation of several phase I and II metabolites in vivo, which represent the largest amount of [...] Read more.
Ferulic acid (FA) is a polyphenol pertaining to the class of hydroxycinnamic acids present in numerous foods of a plant origin. Its dietary consumption leads to the formation of several phase I and II metabolites in vivo, which represent the largest amount of ferulates in the circulation and in the intestine in comparison with FA itself. In this work, we evaluated their efficacy against the proinflammatory effects induced by lipopolysaccharide (LPS) in intestinal Caco-2 cell monolayers, as well as the mechanisms underlying their protective action. LPS-induced overexpression of proinflammatory enzymes such as inducible nitric oxide synthase (iNOS) and the consequent hyperproduction of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) were limited by physiological relevant concentrations (1 µM) of FA, its derivatives isoferulic acid (IFA) and dihydroferulic acid (DHFA), and their glucuronidated and sulfated metabolites, which acted upstream by limiting the activation of MAPK p38 and ERK and of Akt kinase, thus decreasing the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) translocation into the nucleus. Furthermore, the compounds were found to promote the expression of Nrf2, which may have contributed to the downregulation of NF-ĸB activity. The overall data show that phase I/II metabolites retain the efficacy of their dietary free form in contrasting inflammatory response. Full article
(This article belongs to the Special Issue Dietary Polyphenols and Their Role in Gut Health)
Show Figures

Graphical abstract

29 pages, 3492 KiB  
Review
Curcumin: Modulator of Key Molecular Signaling Pathways in Hormone-Independent Breast Cancer
by Reyhaneh Farghadani and Rakesh Naidu
Cancers 2021, 13(14), 3427; https://doi.org/10.3390/cancers13143427 - 8 Jul 2021
Cited by 92 | Viewed by 11280
Abstract
Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among women worldwide. Despite the overall successes in breast cancer therapy, hormone-independent HER2 negative breast cancer, also known as triple negative breast cancer (TNBC), lacking estrogens and progesterone [...] Read more.
Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among women worldwide. Despite the overall successes in breast cancer therapy, hormone-independent HER2 negative breast cancer, also known as triple negative breast cancer (TNBC), lacking estrogens and progesterone receptors and with an excessive expression of human epidermal growth factor receptor 2 (HER2), along with the hormone-independent HER2 positive subtype, still remain major challenges in breast cancer treatment. Due to their poor prognoses, aggressive phenotype, and highly metastasis features, new alternative therapies have become an urgent clinical need. One of the most noteworthy phytochemicals, curcumin, has attracted enormous attention as a promising drug candidate in breast cancer prevention and treatment due to its multi-targeting effect. Curcumin interrupts major stages of tumorigenesis including cell proliferation, survival, angiogenesis, and metastasis in hormone-independent breast cancer through the modulation of multiple signaling pathways. The current review has highlighted the anticancer activity of curcumin in hormone-independent breast cancer via focusing on its impact on key signaling pathways including the PI3K/Akt/mTOR pathway, JAK/STAT pathway, MAPK pathway, NF-ĸB pathway, p53 pathway, and Wnt/β-catenin, as well as apoptotic and cell cycle pathways. Besides, its therapeutic implications in clinical trials are here presented. Full article
Show Figures

Figure 1

15 pages, 3436 KiB  
Article
IL-33 Is Involved in the Anti-Inflammatory Effects of Butyrate and Propionate on TNFα-Activated Endothelial Cells
by Meng Li, Betty C. A. M. van Esch, Paul A. J. Henricks, Johan Garssen and Gert Folkerts
Int. J. Mol. Sci. 2021, 22(5), 2447; https://doi.org/10.3390/ijms22052447 - 28 Feb 2021
Cited by 14 | Viewed by 3112
Abstract
Short-chain fatty acids (e.g., butyrate and propionate) are able to diminish endothelial cell activation. The aim of this study was to investigate whether intracellular IL-33 mediates the effects of butyrate and propionate on TNFα-induced IL-8 production and vascular cell adhesion molecule-1 (VCAM-1) expression. [...] Read more.
Short-chain fatty acids (e.g., butyrate and propionate) are able to diminish endothelial cell activation. The aim of this study was to investigate whether intracellular IL-33 mediates the effects of butyrate and propionate on TNFα-induced IL-8 production and vascular cell adhesion molecule-1 (VCAM-1) expression. In addition, it was investigated whether regulating NF-κB and MAPK signaling pathways are involved. Intracellular IL-33 was measured in human endothelial cells (HUVECs) pre-incubated for 24 h with butyrate (0.1 mM or 5 mM), propionate (0.3 mM or 10 mM), or trichostatin A (TSA, 0.5 μM) prior to TNFα (1 ng/mL) stimulation (24 h). The effects of butyrate, propionate, and TSA on TNFα-induced IL-8, vascular cell adhesion molecule-1 (VCAM-1), NF-κB, and MAPK signaling pathways in normal HUVECs and IL-33 siRNA (siIL-33)-transfected HUVECs were compared to study the role of IL-33 in the protective effects of butyrate and propionate. Endogenous IL-33 was highly expressed in the perinuclear in HUVECs, which was significantly reduced by TNFα stimulation. The TNFα-induced reduction in IL-33 was prevented by pre-incubation with butyrate or propionate. Butyrate (0.1 mM), propionate (0.3 mM), and TSA inhibited the IL-8 production and activation of NF-κB. Interestingly, this effect was not observed in siIL-33-transfected HUVECs. The effects of butyrate (5 mM), propionate (10 mM), and TSA (0.5 μM) on VCAM-1 expression and activation of MAPK signaling pathways were not affected by siIL-33 transfection. In conclusion, we showed that the inhibitory effects of butyrate and propionate on TNFα-induced IL-8 production were mediated by the HDACs/IL-33/NF-κB pathway, while their effects on VCAM-1 expression might be associated with the HDACs/MAPK signaling pathway, independently of IL-33. Full article
Show Figures

Figure 1

17 pages, 4399 KiB  
Article
Chalcones Display Anti-NLRP3 Inflammasome Activity in Macrophages through Inhibition of Both Priming and Activation Steps—Structure-Activity-Relationship and Mechanism Studies
by Wohn-Jenn Leu, Jung-Chun Chu, Jui-Ling Hsu, Chi-Min Du, Yi-Huei Jiang, Lih-Ching Hsu, Wei-Jan Huang and Jih-Hwa Guh
Molecules 2020, 25(24), 5960; https://doi.org/10.3390/molecules25245960 - 16 Dec 2020
Cited by 9 | Viewed by 3300
Abstract
Chalcones are responsible for biological activity throughout fruits, vegetables, and medicinal plants in preventing and treating a variety of inflammation-related diseases. However, their structure-activity relationship (SAR) in inhibiting inflammasome activation has not been explored. We synthesized numerous chalcones and determined their SAR on [...] Read more.
Chalcones are responsible for biological activity throughout fruits, vegetables, and medicinal plants in preventing and treating a variety of inflammation-related diseases. However, their structure-activity relationship (SAR) in inhibiting inflammasome activation has not been explored. We synthesized numerous chalcones and determined their SAR on lipopolysaccharide (LPS)-primed ATP-induced NLRP3 inflammasome activation. 11Cha1 displayed good inhibitory activity on release reaction of caspase-1, IL-1β, and IL-18. It significantly inhibited LPS-induced phosphorylation and proteolytic degradation of IĸB-α and nuclear translocation of NF-ĸB, but had little effect on mitogen-activated protein kinases (MAPKs) activities. Furthermore, 11Cha1 blocked LPS-induced up-regulation of NLRP3, pro-caspase-1, ASC, IL-18, and IL-1β, indicating the suppression on priming step of inflammasome activation. ASC dimerization and oligomerization are considered to be direct evidence for inflammasome activation. 11Cha1 profoundly inhibited ATP-induced formation of ASC dimers, trimers, and oligomers, and the assembly of ASC, pro-caspase-1, and NLRP3 in inflammasome formation. Decrease of intracellular K+ levels is the common cellular activity elicited by all NLRP3 inflammasome activators. 11Cha1 substantially diminished ATP-mediated K+ efflux, confirming the anti-NLRP3 inflammasome activity of 11Cha1. In summary, the SAR of chalcone derivatives in anti-inflammasome activities was examined. Besides, 11Cha1 inhibited both priming and activation steps of NLRP3 inflammasome activation. It inhibited NF-ĸB activation and subsequently suppressed the up-regulation of NLRP3 inflammasome components including NLRP3, ASC, pro-caspase-1, pro-IL-18, and pro-IL-1β. Next, 11Cha1 blocked ATP-mediated K+ efflux and suppressed the assembly and activation of NLRP3 inflammasome, leading to the inhibition of caspase-1 activation and proteolytic cleavage, maturation, and secretion of IL-1β and IL-18. Full article
(This article belongs to the Special Issue Inflammasome Inhibitors)
Show Figures

Figure 1

17 pages, 2760 KiB  
Article
Erythronium japonicum Alleviates Inflammatory Pain by Inhibiting MAPK Activation and by Suppressing NF-κB Activation via ERK/Nrf2/HO-1 Signaling Pathway
by Joon Park and Yun Tai Kim
Antioxidants 2020, 9(7), 626; https://doi.org/10.3390/antiox9070626 - 16 Jul 2020
Cited by 35 | Viewed by 4273
Abstract
Microglial activation-mediated neuroinflammation influences the development of inflammatory pain. The aim of this study was to investigate the anti-inflammatory effects and mechanisms of aqueous Erythronium japonicum extract (EJE) in microglia activation-mediated inflammatory pain. EJE was found to suppress lipopolysaccharide (LPS)-induced inducible nitric oxide [...] Read more.
Microglial activation-mediated neuroinflammation influences the development of inflammatory pain. The aim of this study was to investigate the anti-inflammatory effects and mechanisms of aqueous Erythronium japonicum extract (EJE) in microglia activation-mediated inflammatory pain. EJE was found to suppress lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), ionized calcium-binding adapter molecule 1 (IBA-1), and pro-inflammatory cytokines in BV2 microglial cells. In addition, LPS-induced c-Jun NH2 terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) phosphorylation were inhibited by EJE. Intriguingly, EJE also inhibited p65 phosphorylation by activating extracellular signal-regulated kinase-1/2 (ERK)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Furthermore, the effects of EJE treatment, such as HO-1 induction and the reduction of NF-ĸB activation, were reversed by ERK1/2 inhibition. In an inflammatory pain mouse model, Complete Freund’s Adjuvant (CFA)-induced mechanical allodynia and foot swelling were alleviated by the oral administration of EJE. Consistent with in vitro results, EJE increased HO-1, while decreasing CFA-induced COX-2, IBA-1, and pro-inflammatory cytokines in the spinal cord. Among the components of EJE, butanol most heavily suppressed LPS-induced microglial activation and increased HO-1 expression. These findings indicate that EJE can alleviate inflammatory pain by inhibiting p38 and JNK and by suppressing NF-ĸB via ERK/Nrf2/HO-1 signaling. Full article
(This article belongs to the Special Issue Role of Natural Antioxidants on Neuroprotection and Neuroinflammation)
Show Figures

Graphical abstract

Back to TopTop