Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Luhua chickens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2564 KiB  
Article
Genetic Diversity and Population Structure Analysis of Luhua chickens Based on Genome-Wide Markers
by Qianwen Yang, Wei Han, Jun Yan, Chenghao Zhou, Guohui Li, Huiyong Zhang, Jianmei Yin and Xubin Lu
Animals 2025, 15(14), 2071; https://doi.org/10.3390/ani15142071 - 14 Jul 2025
Viewed by 268
Abstract
The Luhua chicken is an outstanding local breed in China that has been placed under conservation due to the impact of specialized breeding and the widespread adoption of commercial varieties. As such, this study analyzed reproductive traits across three consecutive generations and utilized [...] Read more.
The Luhua chicken is an outstanding local breed in China that has been placed under conservation due to the impact of specialized breeding and the widespread adoption of commercial varieties. As such, this study analyzed reproductive traits across three consecutive generations and utilized whole-genome resequencing data from 60 Luhua chickens to assess conservation efficacy through genetic diversity, run of homozygosity (ROH) distribution, kinship, and population structure so as to better conserve the breed. The results show that, across generations, the body weight at first egg increased, the age at first egg was delayed, and the egg weight at first laying increased. No significant variations were found in the body weight at 300 d or the total egg number. The key genetic parameters of the polymorphism information content (PIC), expected heterozygosity (HE), observed heterozygosity (HO), and mean identical-by-state (IBS) distance were 0.234, 0.351, 0.277, and 0.782, respectively. The majority of ROHs ranged from 0.5 to 1 Mb, and the inbreeding coefficient based on ROHs was calculated at 0.021. The findings reveal that these traits remained unchanged across the three generations. Our research suggests that optimizing the mating plan of Luhua chickens is essential to minimize inbreeding risk. Furthermore, the methodology applied in this study provides a valuable reference for the conservation monitoring of other indigenous chicken breeds. Full article
Show Figures

Figure 1

14 pages, 8402 KiB  
Article
Genetic Analysis of Egg Production Traits in Luhua Chickens: Insights from a Multi-Trait Animal Model and a Genome-Wide Association Study
by Qianwen Yang, Xubin Lu, Guohui Li, Huiyong Zhang, Chenghao Zhou, Jianmei Yin, Wei Han and Haiming Yang
Genes 2024, 15(6), 796; https://doi.org/10.3390/genes15060796 - 17 Jun 2024
Cited by 2 | Viewed by 2239
Abstract
Egg production plays a pivotal role in the economic viability of hens. To analyze the genetic rules of egg production, a total of 3151 Luhua chickens were selected, the egg production traits including egg weight at first laying (Start-EW), egg weight at 43 [...] Read more.
Egg production plays a pivotal role in the economic viability of hens. To analyze the genetic rules of egg production, a total of 3151 Luhua chickens were selected, the egg production traits including egg weight at first laying (Start-EW), egg weight at 43 weeks (EW-43), egg number at 43 weeks (EN-43), and total egg number (EN-All) were recorded. Then, the effects of related factors on egg production traits were explored, using a multi-trait animal model for genetic parameter estimation and a genome-wide association study (GWAS). The results showed that body weight at first egg (BWFE), body weight at 43 weeks (BW-43), age at first egg (AFE), and seasons had significant effects on the egg production traits. Start-EW and EW-43 had moderate heritability of 0.30 and 0.21, while EN-43 and EN-All had low heritability of 0.13 and 0.16, respectively. Start-EW exhibited a robust positive correlation with EW-43, while Start-EW was negatively correlated with EN-43 and EN-All. Furthermore, gene ontology (GO) results indicated that Annexin A2 (ANXA2) and Frizzled family receptor 7 (FZD7) related to EW-43, Cyclin D1 (CCND1) and A2B adenosine receptor (ADORA2B) related to EN-All, and have been found to be mainly involved in metabolism and growth processes, and deserve more attention and further study. This study contributes to accelerating genetic progress in improving low heritability egg production traits in layers, especially in Luhua chickens. Full article
(This article belongs to the Special Issue Poultry Breeding and Genetics)
Show Figures

Figure 1

15 pages, 1447 KiB  
Article
Characteristics, Whole-Genome Sequencing and Pathogenicity Analysis of Escherichia coli from a White Feather Broiler Farm
by Shaopeng Wu, Lulu Cui, Yu Han, Fang Lin, Jiaqi Huang, Mengze Song, Zouran Lan and Shuhong Sun
Microorganisms 2023, 11(12), 2939; https://doi.org/10.3390/microorganisms11122939 - 7 Dec 2023
Cited by 5 | Viewed by 2017
Abstract
Avian colibacillosis, caused by avian Escherichia coli (E. coli), has historically been one of the most prevalent infectious diseases in large-scale poultry production, causing growth delays and mortality in chickens, resulting in huge economic losses. In recent years, the widespread use [...] Read more.
Avian colibacillosis, caused by avian Escherichia coli (E. coli), has historically been one of the most prevalent infectious diseases in large-scale poultry production, causing growth delays and mortality in chickens, resulting in huge economic losses. In recent years, the widespread use of antibiotics has led to the emergence of multidrug resistance in E. coli as a significant global problem and long-term challenge. Resistant E. coli can be transmitted to humans through animal products or the environment, which presents significant public health concerns and food safety issues. In this study, we analyzed the features of 135 E. coli strains obtained from a white feather broiler farm in Shandong, China, including antimicrobial susceptibility tests, detection of class 1 integrons, drug resistance genes, virulence genes, and phylogenetic subgroups. It is particularly worrying that all 135 E. coli strains were resistant to at least five antibiotic agents, and 100% of them were multidrug-resistant (MDR). Notably, the resistance genes of blaTEM, blaCTX-M, qnrS, aaC4, tetA, and tetB exhibited a high prevalence of carriage among the tested resistance genes. However, mcr-2~mcr-9 were not detected, while the prevalence of mcr-1 was found to be 2.96%. The most common virulence genes detected were EAST1 (14.07%, encoding enterotoxins) and fyuA (14.81%, encoding biofilm formation). Phylogenetic subgroup analysis revealed that E. coli belonging to groups B2 and D, which are commonly associated with high virulence, constituted 2.22% and 11.11%, respectively. The positive rate of class 1 integrons was 31.1%. Whole-genome sequencing (WGS) and animal experiments were performed on a unique isolated strain called 21EC78 with an extremely strong membrane-forming capacity. The WGS results showed that 21EC78 carried 11 drug resistance genes and 16 virulence genes. Animal experiments showed that intraperitoneal injection with 2 × 105 CFU could cause the death of one-day-old SPF chickens in 3 days. However, the mortality of Luhua chickens was comparatively lower than that of SPF chickens. This study reports the isolation of multidrug-resistant E. coli strains in poultry, which may pose a potential threat to human health via the food chain. Furthermore, the findings of this study enhance our comprehension of the frequency and characteristics of multidrug-resistant E. coli in poultry farms, emphasizing the urgent need for improved and effective continuous surveillance to control its dissemination. Full article
(This article belongs to the Special Issue Bacterial Antibiotic Resistance)
Show Figures

Figure 1

21 pages, 3837 KiB  
Article
Effects of Dietary Quinoa Seeds on Cecal Microorganisms and Muscle Fatty Acids of Female Luhua Chickens
by Tao Wu, Xiaofan Jiang, Farong Yang, Yuming Wei, Shengguo Zhao and Ting Jiao
Animals 2022, 12(23), 3334; https://doi.org/10.3390/ani12233334 - 28 Nov 2022
Cited by 6 | Viewed by 2186
Abstract
To study the effects of adding quinoa seed (raw grain) to the diet of the Luhua chicken on the cecal microorganism abundance and fatty acid composition of muscle, 120 49-day-old healthy female dewormed Luhua chickens (body weight 1476.21 ± 101.39 g) were randomly [...] Read more.
To study the effects of adding quinoa seed (raw grain) to the diet of the Luhua chicken on the cecal microorganism abundance and fatty acid composition of muscle, 120 49-day-old healthy female dewormed Luhua chickens (body weight 1476.21 ± 101.39 g) were randomly divided into 4 groups, with 3 replicates in each group and 10 chickens in each repetition. The control group (CK group) was fed a basal diet and the experimental groups were fed with 4% (Q4), 8% (Q8), and 12% (Q12) quinoa seed (raw grain) added to the basal diet for 75 days. After 121 days of age, the animals were slaughtered and the 16S rRNA characteristics of cecal flora, as well as composition and content of fatty acids in muscle, were determined and analyzed. The content of unsaturated fatty acids (UFAs), docosahexaenoic acid (C22:6n3; DHA) and n-3 polyunsaturated fatty acids (n-3 PUFAs) in the breast and leg muscles significantly increased in the experimental groups supplemented with quinoa seeds (p < 0.05). However, the content of saturated fatty acids (SAFs) and ratio of n-6/n-3 in breast muscle and leg muscle significantly decreased (p < 0.05). In addition, adding a certain percentage of quinoa seeds in the diet can also affect the community composition and content of microorganisms in the ceca of Luhua chickens. At the phylum level, the Proteobacteria, Actinobacteria, Synergistetes and Melainabacteria in experimental groups (Q4, Q8 and Q12) were significantly lower than those in the CK group (p < 0.05). At the genus level, Desulfovibrio, Synergistes, Olsenella, Parabacteroides, Mailhella, Sutterella and Ruminiclostridiu in group Q4 were significantly lower than those in group CK (p < 0.05) while Faecalibacterium in Q8 group, and Lawsonia and Faecalibacterium in Q12 group were significantly higher than those in the CK group (p < 0.05). Enrichment analysis of the microbial function showed that compared with the CK group, Metabolism and Enzyme Families were significantly enriched in the Q4 group (p < 0.05). Cellular Processes and Signaling were significantly enriched in the Q8 group (p < 0.05). The association analysis of fatty acids with microorganisms showed that the abundance of Faecalibacterium, Lawsonia and Meagmonas was significantly correlated with partial SFAs and UFAs (p < 0.05). In conclusion, adding quinoa seeds to diets significantly increased the content of muscle DHA, UFAs and n-3 PUFAs. The content of SAFs and the n-6/n-3 ratio were significantly reduced. Taken together, quinoa can effectively improve the cecal microbiota structure, inhibit the number of harmful bacteria and increase the number of beneficial bacteria, regulating the intestinal environment and promoting the body health of female Luhua chickens. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

21 pages, 2928 KiB  
Article
Effects of Dietary Oregano Essential Oil on Cecal Microorganisms and Muscle Fatty Acids of Luhua Chickens
by Tao Wu, Farong Yang, Ting Jiao and Shengguo Zhao
Animals 2022, 12(22), 3215; https://doi.org/10.3390/ani12223215 - 20 Nov 2022
Cited by 8 | Viewed by 2464
Abstract
This experiment was conducted to investigate the effects of oregano essential oil on the cecal microorganisms and muscle fatty acids of Luhua chickens. One hundred and twenty 49-day-old healthy dewormed Luhua chickens were randomly divided into four groups with three replicates per group [...] Read more.
This experiment was conducted to investigate the effects of oregano essential oil on the cecal microorganisms and muscle fatty acids of Luhua chickens. One hundred and twenty 49-day-old healthy dewormed Luhua chickens were randomly divided into four groups with three replicates per group and ten chickens per replicate. The corn–quinoa and soybean meal diets were supplemented with 0 (Q8 group), 50 (QO50 group), 100 (QO100 group) and 150 mg·kg−1 (QO150 group) of oregano essential oil, respectively, and the experiment lasted for 75 days. The composition of intestinal flora was detected by Illumina sequencing of the 16S rRNA V4 region, and the composition and content of fatty acids in the muscles were analyzed by gas chromatography. The results showed that dietary oregano essential oil can effectively increase the contents of elaidic acid (C18:ln9t), polyunsaturated fatty acids (PUFAs) and n-3 polyunsaturated fatty acids (n-3 PUFAs) in breast muscle tissues. However, the fatty acid composition and PUFA content in leg muscle tissues were not significantly improved. According to a 16S rRNA high-throughput sequencing analysis, dietary oregano essential oil supplementation with a certain concentration can change the cecal microbial community composition of broilers. At the phylum level, Elusimicrobia in the QO150 group was significantly lower than that in Q8 group (p < 0.05). At the genus level, Phascolarctobacterium, Parasutterella and Bilophila in the experimental groups (QO50, QO100 and QO150) were significantly lower than those in the Q8 group (p < 0.05). An enrichment analysis of the microbial function found that the amino acid metabolism, energy metabolism, metabolism, signal transduction and genetic information processing were mainly enriched in the experimental groups, which promoted the digestion and absorption of nutrients and enhanced intestinal barrier functioning. An analysis of the association between fatty acids and microbes found that the abundance of microbiota was significantly correlated with partially saturated fatty acids (SFAs) and unsaturated fatty acids (UFAs) (p < 0.05). In conclusion, the dietary addition of oregano essential oil can effectively improve cecal microbial community composition, promote the digestion and absorption of nutrients, and enhance intestinal barrier functioning. It can significantly improve the content of some fatty acids, and there was a certain correlation between caecum microorganisms and fatty acid deposition in muscles. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

13 pages, 4192 KiB  
Article
Complete Mitochondrial Genome, Genetic Diversity and Phylogenetic Analysis of Pingpu Yellow Chicken (Gallus gallus)
by Sihua Jin, Jingjing Xia, Fumin Jia, Lijun Jiang, Xin Wang, Xuling Liu, Xing Liu and Zhaoyu Geng
Animals 2022, 12(21), 3037; https://doi.org/10.3390/ani12213037 - 4 Nov 2022
Cited by 3 | Viewed by 3004
Abstract
In this study, the complete mitochondrial genome sequence of one female Pingpu Yellow chicken (PYC) and the D-loop sequences obtained from 60 chickens were analyzed to investigate their genetic diversity and phylogeny. The total length of the PYC mitogenome is 16,785 bp and [...] Read more.
In this study, the complete mitochondrial genome sequence of one female Pingpu Yellow chicken (PYC) and the D-loop sequences obtained from 60 chickens were analyzed to investigate their genetic diversity and phylogeny. The total length of the PYC mitogenome is 16,785 bp and that of the complete D-loop is 1231 to 1232 bp. The mitogenome comprises 22 transfer ribonucleic acids (tRNAs), 2 ribosomal ribonucleic acids (rRNAs), 13 protein-coding genes (PCGs), and 1 non-coding control region (D-loop). Additionally, the total length of the 13 PCGs is 11,394 bp, accounting for 67.88% of the complete mitogenome sequence, and the PCGs region has 3798 codons. A majority of the PCGs have ATG as the start codon. The haplotype and nucleotide diversity of PYC were 1.00000 ± 0.00029 and 0.32678 ± 0.29756, respectively. In the D-Loop data set, we found 25 polymorphic sites, which determined 18 haplotypes and 3 major haplogroups (A–C). Therefore, PYC has a classical vertebrate mitogenome, with comparatively high nucleotide diversity and potentially three maternal lineages. The neighbor-joining (NJ) tree analysis results showed PYC grouped with the Luhua (MT555049.1) and Nandan chickens (KP269069.1), which indicates that PYC is closely related to these two breeds. Full article
(This article belongs to the Special Issue Adaptive Evolution and Trait Formation of Animals)
Show Figures

Figure 1

14 pages, 1477 KiB  
Article
The Use of Electronic Nose in the Quality Evaluation and Adulteration Identification of Beijing-You Chicken
by Jingru Chen, Wenjie Yan, Yu Fu, Liang Wang, Xueze Lv, Ruitong Dai, Xingmin Li and Fei Jia
Foods 2022, 11(6), 782; https://doi.org/10.3390/foods11060782 - 8 Mar 2022
Cited by 18 | Viewed by 3565
Abstract
The objective of this study was to reveal the secrets of the unique meat characteristics of Beijing-you chicken (BJY) and to compare the difference of quality and flavor with Luhua chicken (LH) and Arbor Acres broiler (AA) at their typical market ages. The [...] Read more.
The objective of this study was to reveal the secrets of the unique meat characteristics of Beijing-you chicken (BJY) and to compare the difference of quality and flavor with Luhua chicken (LH) and Arbor Acres broiler (AA) at their typical market ages. The results showed the meat of BJY was richer in essential amino acids, arachidonic acid contents, inosine monophosphate (IMP), and guanosine monophosphate (GMP). The total fatty acid and unsaturated fatty acid contents of BJY chicken and LH chicken were lower than that of AA broilers, whereas the ratios of unsaturated fatty acids/saturated fatty acids (2.31) and polyunsaturated fatty acids/monounsaturated fatty acids (1.52) of BJY chicken were the highest. The electronic nose and SPME-GC/MS analysis confirmed the significant differences among these three chickens, and the variety and relative content of aldehydes might contribute to a richer flavor of BJY chicken. The meat characteristics of BJY were fully investigated and showed that BJY chicken might be favored among these three chicken breeds with the best flavor properties and the highest nutritional value. This study also provides an alternative way to identify BJY chicken from other chickens. Full article
(This article belongs to the Special Issue Advances in Flavor of Meat and Meat Products)
Show Figures

Figure 1

Back to TopTop