Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Li-doped MgZnO nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2757 KiB  
Article
Highly Efficient Inverted Organic Light-Emitting Devices with Li-Doped MgZnO Nanoparticle Electron Injection Layer
by Hwan-Jin Yoo, Go-Eun Kim, Chan-Jun Park, Su-Been Lee, Seo-Young Kim and Dae-Gyu Moon
Micromachines 2025, 16(6), 617; https://doi.org/10.3390/mi16060617 - 24 May 2025
Viewed by 509
Abstract
Inverted organic light-emitting devices (OLEDs) have been attracting considerable attention due to their advantages such as high stability, low image sticking, and low operating stress in display applications. To address the charge imbalance that has been known as a critical issue of the [...] Read more.
Inverted organic light-emitting devices (OLEDs) have been attracting considerable attention due to their advantages such as high stability, low image sticking, and low operating stress in display applications. To address the charge imbalance that has been known as a critical issue of the inverted OLEDs, Li-doped MgZnO nanoparticles were synthesized as an electron-injection layer of the inverted OLEDs. Hexagonal wurtzite-structured Li-doped MgZnO nanoparticles were synthesized at room temperature via a solution precipitation method using LiCl, magnesium acetate tetrahydrate, zinc acetate dihydrate, and tetramethylammonium hydroxide pentahydrate. The Mg concentration was fixed at 10%, while the Li concentration was varied up to 15%. The average particle size decreased with Li doping, exhibiting the particle sizes of 3.6, 3.0, and 2.7 nm for the MgZnO, 10% and 15% Li-doped MgZnO nanoparticles, respectively. The band gap, conduction band minimum and valence band maximum energy levels, and the visible emission spectrum of the Li-doped MgZnO nanoparticles were investigated. The surface roughness and electrical conduction properties of the Li-doped MgZnO nanoparticle films were also analyzed. The inverted phosphorescent OLEDs with Li-doped MgZnO nanoparticles exhibited higher external quantum efficiency (EQE) due to better charge balance resulting from suppressed electron conduction, compared to the undoped MgZnO nanoparticle devices. The maximum EQE of 21.7% was achieved in the 15% Li-doped MgZnO nanoparticle devices. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Third Edition)
Show Figures

Figure 1

19 pages, 8081 KiB  
Article
Doped Nanoscale NMC333 as Cathode Materials for Li-Ion Batteries
by Ahmed M. Hashem, Ashraf E. Abdel-Ghany, Marco Scheuermann, Sylvio Indris, Helmut Ehrenberg, Alain Mauger and Christian M. Julien
Materials 2019, 12(18), 2899; https://doi.org/10.3390/ma12182899 - 7 Sep 2019
Cited by 27 | Viewed by 5826
Abstract
A series of Li(Ni1/3Mn1/3Co1/3)1−xMxO2 (M = Al, Mg, Zn, and Fe, x = 0.06) was prepared via sol-gel method assisted by ethylene diamine tetra acetic acid as a chelating agent. A [...] Read more.
A series of Li(Ni1/3Mn1/3Co1/3)1−xMxO2 (M = Al, Mg, Zn, and Fe, x = 0.06) was prepared via sol-gel method assisted by ethylene diamine tetra acetic acid as a chelating agent. A typical hexagonal α-NaFeO2 structure (R-3m space group) was observed for parent and doped samples as revealed by X-ray diffraction patterns. For all samples, hexagonally shaped nanoparticles were observed by scanning electron microscopy and transmission electron microscopy. The local structure was characterized by infrared, Raman, and Mössbauer spectroscopy and 7Li nuclear magnetic resonance (Li-NMR). Cyclic voltammetry and galvanostatic charge-discharge tests showed that Mg and Al doping improved the electrochemical performance of LiNi1/3Mn1/3Co1/3O2 in terms of specific capacities and cyclability. In addition, while Al doping increases the initial capacity, Mg doping is the best choice as it improves cyclability for reasons discussed in this work. Full article
Show Figures

Figure 1

Back to TopTop