Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Lake Gusinoe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5319 KiB  
Article
Distribution of Heavy Metals in Water and Bottom Sediments in the Basin of Lake Gusinoe (Russia): Ecological Risk Assessment
by Tcogto Zh. Bazarzhapov, Valentina G. Shiretorova, Larisa D. Radnaeva, Elena P. Nikitina, Selmeg V. Bazarsadueva, Galina S. Shirapova, Suocheng Dong, Zehong Li, Shiqi Liu and Ping Wang
Water 2023, 15(19), 3385; https://doi.org/10.3390/w15193385 - 27 Sep 2023
Cited by 7 | Viewed by 2027
Abstract
Fresh water scarcity is considered a significant component, and potentially one of the most critical, of global climate change. With the rapid development of industry, there is an increasing risk of freshwater contamination by heavy metals (HMs). The danger of HM pollution is [...] Read more.
Fresh water scarcity is considered a significant component, and potentially one of the most critical, of global climate change. With the rapid development of industry, there is an increasing risk of freshwater contamination by heavy metals (HMs). The danger of HM pollution is also attributed to their accumulation, which can subsequently become a source of secondary pollution in aquatic environments. In the Lake Gusinoe basin, located in Russia, concentrations of HMs were measured in both water and bottom sediments within the lake area, as well as in inflowing and outflowing watercourses. Ecological risk indices were also calculated for the Gusinoe basin. Our results showed that the average concentrations of Fe, Zn, Cr, Ni, Cd, and Pb in the water did not exceed the maximum allowable concentrations (MACs) set by Russian national standards and WHO standards, while the concentrations of Mn and Cu exceeded the corresponding MACs during winter, spring, and autumn possibly due to decomposition of aquatic vegetation and influx from groundwater sources. The average concentrations of the investigated HMs in the BSs did not exceed the background values. The water hazard index indicated a low risk for all samples in the lake water area. For all BS samples, the geoaccumulation index (Igeo) and the Pollution Load Index (PLI) indicated low pollution levels, while the values of the Enrichment Factor (EF) and the Contamination Factor (CF) indicated moderate pollution in the central part of the lake. The Ecological Risk Factor (Er) for Cu in BSs at points near major settlements and in the Tel River indicated moderate pollution. The Potential Ecological Risk Index (RI) in all investigated BS samples indicated a low risk of contamination. Full article
Show Figures

Figure 1

23 pages, 5829 KiB  
Article
Ecological State of Lake Gusinoe—A Cooling Pond of the Gusinoozersk GRES
by Larisa D. Radnaeva, Tcogto Zh. Bazarzhapov, Valentina G. Shiretorova, Svetlana V. Zhigzhitzhapova, Elena P. Nikitina, Elena P. Dylenova, Galina S. Shirapova, Olga D. Budaeva, Andrey N. Beshentsev, Endon Zh. Garmaev, Ping Wang, Suocheng Dong, Zehong Li and Arnold K. Tulokhonov
Water 2022, 14(1), 4; https://doi.org/10.3390/w14010004 - 21 Dec 2021
Cited by 4 | Viewed by 3451
Abstract
The study of the transformation of substances in the basin of the Selenga River—the main tributary of Lake Baikal—under anthropogenic pressure and in the context of global climate change, is especially important for the lake, a globally important source of drinking water. The [...] Read more.
The study of the transformation of substances in the basin of the Selenga River—the main tributary of Lake Baikal—under anthropogenic pressure and in the context of global climate change, is especially important for the lake, a globally important source of drinking water. The ecosystem of Lake Gusinoe is one of the key objects in the Selenga River basin that is exposed to significant anthropogenic pressure. This study presents the results of an analysis of water level changes and physicochemical parameters of the water mass of Lake Gusinoe; literature data from 1951 to 2017 and own data from 2017 to 2021. The water level in the lake had depended on natural factors before the Gusinoozersk GRES was launched; however, since the plant has begun using the lake as a cooling pond, its level has actually been regulated by the economic entity. Over the years, there has been a significant increase in mineralization, sulfate, sodium, fluoride and organic matter fractions resistant to oxidation. Seasonal increases in iron and manganese concentrations in water were detected. Increased concentrations of nutrients and organic matter fractions resistant to oxidation were registered at the wastewater discharge sites. Heavy metals in the bottom sediments of Lake Gusinoe accumulate mainly in the silt of the deep zone of the lake. Plants growing in the zones of influence of the Gusinoozersk GRES and Gusinoozersk wastewater discharge accumulate the largest amount of metals. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

16 pages, 2196 KiB  
Article
Nutrients, Organic Matter, and Trace Elements in Lake Gusinoe (Transbaikalia)
by Zinaida Ivanovna Khazheeva, Aleksey Maksimovich Plyusnin, Olga Konstantinovna Smirnova, Elena Georgievna Peryazeva, Seseg Sergeevna Sanzhanova, Dashima Ivanovna Zhambalova, Svetlana Gennadievna Doroshkevich and Viktoriya Valerievna Dabaeva
Water 2021, 13(21), 2958; https://doi.org/10.3390/w13212958 - 20 Oct 2021
Cited by 2 | Viewed by 2669
Abstract
Lake Gusinoe is the second largest freshwater lake in Transbaikalia. Lakes serve as a source for drinking water, irrigation, and as a water source for the electricity, aquatic production, and tourism industry. Currently variations of content nutrients and organic matter differ in different [...] Read more.
Lake Gusinoe is the second largest freshwater lake in Transbaikalia. Lakes serve as a source for drinking water, irrigation, and as a water source for the electricity, aquatic production, and tourism industry. Currently variations of content nutrients and organic matter differ in different areas of the lake. The content of total nitrogen, phosphorus, organic matter, and dissolved oxygen are distinguished more than 1.2–2.0 times. In accordance with the behavior of elements in the water, three groups of elements can be distinguished. The first group of elements, including Li, Ga, Ge, As, Rb, Sr, Mo, Cd, W, and U, were directly correlated with variations of major elements. The first group of elements showed decreasing concentrations with an increasing amount of total dissolved salt (TDS). The second group of elements, including Fe, Y, Nb, Th, and REE, were correlated oppositely with variations of TDS. The behavior of the third group of elements, including Mn, Zn, Ni, Cu, and Pb, decoupled with TDS. The value of the Eu anomaly was positively correlated with TDS. The water of Lake Gusinoe was extremely enriched by W, Mo, V, U, Li, Sr, and Ga; moderately by Ni, Cu, Ge, As, Rb, Cd, and Pb; and minimally by Al, Cr, Mn, Fe, Co, Zn, Y, Th, and REE. Full article
Show Figures

Figure 1

11 pages, 884 KiB  
Article
The Comparison of Fatty Acid Composition and Lipid Quality Indices of Roach, Perch, and Pike of Lake Gusinoe (Western Transbaikalia)
by Selmeg V. Bazarsadueva, Larisa D. Radnaeva, Valentina G. Shiretorova and Elena P. Dylenova
Int. J. Environ. Res. Public Health 2021, 18(17), 9032; https://doi.org/10.3390/ijerph18179032 - 27 Aug 2021
Cited by 16 | Viewed by 2341
Abstract
This paper describes the study of the fatty acid (FA) composition of three fish species (roach, perch, and pike) from Lake Gusinoe (western Transbaikalia). Using principal component analysis, the fatty acid composition of the studied fish species was shown to be species specific. [...] Read more.
This paper describes the study of the fatty acid (FA) composition of three fish species (roach, perch, and pike) from Lake Gusinoe (western Transbaikalia). Using principal component analysis, the fatty acid composition of the studied fish species was shown to be species specific. The muscle tissue of roach, perch, and pike was found to contain high levels of polyunsaturated fatty acids (PUFA), including essential docosahexaenoic (DHA), eicosapentaenoic (EPA), and arachidonic acids. Indicators of nutritional quality based on the fatty acid composition showed that the values of the hypocholesterolemic/hypercholesterolemic (HH) ratio indices were sufficiently high. The atherogenicity (AI) and thrombogenicity (TI) indices, which are indicators for the nutritional value, were less than 1 in the studied fish. In terms of flesh lipid quality (FLQ), pike and perch had the highest proportion of total EPA + DHA. According to the obtained data for the composition of fatty acids in the muscle tissue of the studied fish from Lake Gusinoe, the anthropogenic load exerted on Lake Gusinoe has not yet statistically significantly affected the fish muscle quality. Full article
Show Figures

Figure 1

Back to TopTop