Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (8)

Search Parameters:
Keywords = Lactobacillus curvatus HY7601

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4101 KiB  
Article
Synergistic Effect of Lactobacillus Mixtures and Lagerstroemia speciosa Leaf Extract in Reducing Obesity in High-Fat Diet-Fed Mice
by Kippeum Lee, Hyeon-Ji Kim, Joo Yun Kim, Jae Jung Shim and Jae Hwan Lee
Biology 2024, 13(12), 1047; https://doi.org/10.3390/biology13121047 - 13 Dec 2024
Viewed by 1660
Abstract
In this study, we describe the anti-obesity effects of a novel combination of Lactobacillus mixture (Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032) and leaf extract of Lagerstroemia speciosa (L. speciosa) in mice. The administration of the probiotic mixture of HY7601 and KY1032 [...] Read more.
In this study, we describe the anti-obesity effects of a novel combination of Lactobacillus mixture (Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032) and leaf extract of Lagerstroemia speciosa (L. speciosa) in mice. The administration of the probiotic mixture of HY7601 and KY1032 in combination with the leaf extract of L. speciosa significantly attenuated fat tissue formation and body weight gain in mice fed a high-fat diet. The white adipose fat mass, comprising the inguinal and epididymal fat pads, was most effectively reduced when the probiotic mixture and L. speciosa leaf extract was orally administered to the mice in combination. This combination also reduced the mRNA expression of adipogenic genes (those encoding CCAAT/enhancer-binding protein alpha, peroxisome proliferator-activated receptor gamma, and fatty acid-binding protein 4) in inguinal and epididymal white adipose tissue depots and the liver. Finally, the combination of reduced blood glucose concentrations regulated the insulin resistance of high-fat diet-fed obese mice. These findings provide insight into the mechanisms underlying the effect of this combination and suggest that using Lactobacillus mixture (HY7601 and KY1032) is as safe as microbial monotherapy, but more effective at preventing obesity. Full article
(This article belongs to the Special Issue Physiology and Pathophysiology of Obesity)
Show Figures

Graphical abstract

17 pages, 5065 KiB  
Article
A Mixture of Lactobacillus HY7601 and KY1032 Regulates Energy Metabolism in Adipose Tissue and Improves Cholesterol Disposal in High-Fat-Diet-Fed Mice
by Kippeum Lee, Hyeon-Ji Kim, Joo-Yun Kim, Jae-Jung Shim and Jae-Hwan Lee
Nutrients 2024, 16(15), 2570; https://doi.org/10.3390/nu16152570 - 5 Aug 2024
Cited by 5 | Viewed by 2451
Abstract
We aimed to characterize the anti-obesity and anti-atherosclerosis effects of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 using high-fat diet (HFD)-fed obese C57BL/6 mice. We divided the mice into control (CON), HFD, HFD with 108 CFU/kg/day probiotics (HFD + KL, HY7301:KY1032 = [...] Read more.
We aimed to characterize the anti-obesity and anti-atherosclerosis effects of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 using high-fat diet (HFD)-fed obese C57BL/6 mice. We divided the mice into control (CON), HFD, HFD with 108 CFU/kg/day probiotics (HFD + KL, HY7301:KY1032 = 1:1), and HFD with 109 CFU/kg/day probiotics (HFD + KH, HY7301:KY1032 = 1:1) groups and fed/treated them during 7 weeks. The body mass, brown adipose tissue (BAT), inguinal white adipose tissue (iWAT), and epididymal white adipose tissue (eWAT) masses and the total cholesterol and triglyceride concentrations were remarkably lower in probiotic-treated groups than in the HFD group in a dose-dependent manner. In addition, the expression of uncoupling protein 1 in the BAT, iWAT, and eWAT was significantly higher in probiotic-treated HFD mice than in the HFD mice, as demonstrated by immunofluorescence staining and Western blotting. We also measured the expression of cholesterol transport genes in the liver and jejunum and found that the expression of those encoding liver-X-receptor α, ATP-binding cassette transporters G5 and G8, and cholesterol 7α-hydroxylase were significantly higher in the HFD + KH mice than in the HFD mice. Thus, a Lactobacillus HY7601 and KY1032 mixture with 109 CFU/kg/day concentration can assist with body weight regulation through the management of lipid metabolism and thermogenesis. Full article
(This article belongs to the Special Issue Nutritional and Metabolic Changes Affecting Adipose Tissue Biology)
Show Figures

Figure 1

13 pages, 1039 KiB  
Article
Effect of HY7602 Fermented Deer Antler on Physical Fatigue and Antioxidant Activity in Mice
by Hyejin Jeon, Kippeum Lee, Yong-Tae Kim, Joo-Yun Kim, Jae-Jung Shim and Jae-Hwan Lee
Int. J. Mol. Sci. 2024, 25(6), 3318; https://doi.org/10.3390/ijms25063318 - 14 Mar 2024
Cited by 4 | Viewed by 2520
Abstract
Lactobacillus curvatus HY7602 fermented antler (FA) ameliorates sarcopenia and improves exercise performance by increasing muscle mass, muscle fiber regeneration, and mitochondrial biogenesis; however, its anti-fatigue and antioxidant effects have not been studied. Therefore, this study aimed to investigate the anti-fatigue and antioxidant effects [...] Read more.
Lactobacillus curvatus HY7602 fermented antler (FA) ameliorates sarcopenia and improves exercise performance by increasing muscle mass, muscle fiber regeneration, and mitochondrial biogenesis; however, its anti-fatigue and antioxidant effects have not been studied. Therefore, this study aimed to investigate the anti-fatigue and antioxidant effects and mechanisms of FA. C2C12 and HepG2 cells were stimulated with 1 mM of hydrogen peroxide (H2O2) to induce oxidative stress, followed by treatment with FA. Additionally, 44-week-old C57BL/6J mice were orally administered FA for 4 weeks. FA treatment (5–100 μg/mL) significantly attenuated H2O2-induced cytotoxicity and reactive oxygen species (ROS) production in both cell lines in a dose-dependent manner. In vivo experiments showed that FA treatment significantly increased the mobility time of mice in the forced swimming test and significantly downregulated the serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), creatine kinase (CK), and lactate. Notably, FA treatment significantly upregulated the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione/oxidized glutathione ratio (GSH/GSSG) and increased the mRNA expression of antioxidant genes (SOD1, SOD2, CAT, GPx1, GPx2, and GSR) in the liver. Conclusively, FA is a potentially useful functional food ingredient for improving fatigue through its antioxidant effects. Full article
(This article belongs to the Special Issue Effects of Functional Food Components in Health and Disease)
Show Figures

Figure 1

14 pages, 2293 KiB  
Article
Effect of Lactobacillus curvatus HY7602-Fermented Antler on Sarcopenia in Mice
by Hyejin Jeon, Kippeum Lee, Joo-Yun Kim, Jae-Jung Shim and Jung-Lyoul Lee
Fermentation 2023, 9(5), 429; https://doi.org/10.3390/fermentation9050429 - 28 Apr 2023
Cited by 3 | Viewed by 2125
Abstract
Sarcopenia, commonly found in the elderly, causes a decrease in muscle mass and function. Lactobacillus curvatus HY7602-fermented antler (FA) is a functional food that increases muscle strength and ameliorates dexamethasone-induced muscle atrophy. In the present study, we evaluated the effects of FA on [...] Read more.
Sarcopenia, commonly found in the elderly, causes a decrease in muscle mass and function. Lactobacillus curvatus HY7602-fermented antler (FA) is a functional food that increases muscle strength and ameliorates dexamethasone-induced muscle atrophy. In the present study, we evaluated the effects of FA on age-related muscle atrophy and its mechanism of action using 100-week-old BALB/c mice. Physiological changes during fermentation were investigated. The results showed that the oral administration of FA substantially recovered muscle loss up to 23.6% and improved physical performance, such as treadmill running distance and limb grip strength, in aged mice. A gene expression analysis of muscle fibers showed that the effect of FA on age-related muscle atrophy was significantly associated with the inhibition of protein degradation and apoptosis, muscle fiber regeneration, and increased mitochondrial biogenesis. In addition, the acetate and butyrate contents increased by more than 50% during the fermentation of antler. In conclusion, FA can be considered as a functional food ingredient capable of effectively controlling muscle atrophy caused by aging and can be a novel alternative treatment for sarcopenia. Full article
(This article belongs to the Special Issue High Quality Functional Food: Potential of Probiotics 2.0)
Show Figures

Figure 1

18 pages, 2839 KiB  
Article
Effects of Lactobacillus curvatus HY7602-Fermented Antlers in Dexamethasone-Induced Muscle Atrophy
by Hyejin Jeon, Yong-Tae Kim, Woo Young Jang, Joo-Yun Kim, Keon Heo, Jae-Jung Shim, Jung-Lyoul Lee, Deok-Chun Yang and Se Chan Kang
Fermentation 2022, 8(9), 454; https://doi.org/10.3390/fermentation8090454 - 12 Sep 2022
Cited by 11 | Viewed by 4074
Abstract
This study assessed the improvements yielded by Lactobacillus curvatus HY7602-fermented antlers (FA) in dexamethasone-induced muscle atrophy and the effects of bioactive compounds increased by fermentation. Dexamethasone-treated C2C12 myoblast cells were treated with FA and non-fermented antlers (NFA). FA showed inhibitory effects on muscle [...] Read more.
This study assessed the improvements yielded by Lactobacillus curvatus HY7602-fermented antlers (FA) in dexamethasone-induced muscle atrophy and the effects of bioactive compounds increased by fermentation. Dexamethasone-treated C2C12 myoblast cells were treated with FA and non-fermented antlers (NFA). FA showed inhibitory effects on muscle protein degradation in the C2C12 cells. Hsb:ICR mice were orally administered saline (control(CON) and dexamethasone only (DEX)), oxymetholone (DEX+OXY), NFA (DEX+NFA), and FA (DEX+FA) via gavage. Before the end of the experiment, dexamethasone was intraperitoneally (IP) injected into the mice, except in the control group, to induce muscle atrophy. Compared with the DEX group, the DEX+FA group exhibited a significant prevention in the reduction of hindlimb strength, calf thickness, calf muscle weight, and the cross-sectional area of muscle fibers (p < 0.05). The FA-induced improvements in muscle atrophy were associated with a decreased gene expression of protein degradation and growth inhibition, and an increased gene expression of protein synthesis and growth factors. Sialic acid, a bioactive compound associated with muscles, was increased by 51.41% after fermentation and suppressed the expression of protein degradation genes in the C2C12 cells. L. curvatus HY7602-fermented antlers with increased sialic acid after fermentation may therefore be useful for preventing and improving muscle atrophy. Full article
(This article belongs to the Special Issue Bioactivity Change in Fermented Foods)
Show Figures

Figure 1

18 pages, 3253 KiB  
Article
Effects of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 on Overweight and the Gut Microbiota in Humans: Randomized, Double-Blinded, Placebo-Controlled Clinical Trial
by Sung-Joon Mo, Kippeum Lee, Hyoung-Ju Hong, Dong-Ki Hong, Seung-Hee Jung, Soo-Dong Park, Jae-Jung Shim and Jung-Lyoul Lee
Nutrients 2022, 14(12), 2484; https://doi.org/10.3390/nu14122484 - 15 Jun 2022
Cited by 52 | Viewed by 9665
Abstract
Obesity and overweight are closely related to diet, and the gut microbiota play an important role in body weight and human health. The aim of this study was to explore how Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 supplementation alleviate obesity by modulating [...] Read more.
Obesity and overweight are closely related to diet, and the gut microbiota play an important role in body weight and human health. The aim of this study was to explore how Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 supplementation alleviate obesity by modulating the human gut microbiome. A randomized, double-blind, placebo-controlled study was conducted on 72 individuals with overweight. Over a 12-week period, probiotic groups consumed 1 × 1010 colony-forming units of HY7601 and KY1032, whereas the placebo group consumed the same product without probiotics. After treatment, the probiotic group displayed a reduction in body weight (p < 0.001), visceral fat mass (p < 0.025), and waist circumference (p < 0.007), and an increase in adiponectin (p < 0.046), compared with the placebo group. Additionally, HY7601 and KY1032 supplementation modulated bacterial gut microbiota characteristics and beta diversity by increasing Bifidobacteriaceae and Akkermansiaceae and decreasing Prevotellaceae and Selenomonadaceae. In summary, HY7601 and KY1032 probiotics exert anti-obesity effects by regulating the gut microbiota; hence, they have therapeutic potential for preventing or alleviating obesity and living with overweight. Full article
(This article belongs to the Special Issue Nutrition, Metabolites, and Human Health)
Show Figures

Figure 1

11 pages, 1541 KiB  
Article
Fermented Antler Recovers Stamina, Muscle Strength and Muscle Mass in Middle-Aged Mice
by Yong-Tae Kim, Hyejin Jeon, Sung-Hwan Kim, Keon Heo, Jae-Jung Shim, Jung-Lyoul Lee, Deok-Chun Yang and Se Chan Kang
Appl. Sci. 2022, 12(1), 106; https://doi.org/10.3390/app12010106 - 23 Dec 2021
Cited by 11 | Viewed by 3299
Abstract
In a previous study, we found that Lactobacillus curvatus HY7602-fermented antler (FA) improved exercise endurance by increasement of muscle mass and strength in a young mouse model. In this study, we investigated the effect of FA on recovery of muscle mass and strength [...] Read more.
In a previous study, we found that Lactobacillus curvatus HY7602-fermented antler (FA) improved exercise endurance by increasement of muscle mass and strength in a young mouse model. In this study, we investigated the effect of FA on recovery of muscle mass and strength in aging-induced muscle loss. We have used a middle-aged model in which muscle decline begins in many mammalian species. All mice performed treadmill exercise and forced swimming, and measured muscle grip strength. Then, calf muscle weight and histological analysis, blood biomarker and gene expression in soleus muscle tissue were measured. Muscle strength and forced swimming time were significantly increased in the FA-intake groups compared to controls. The levels of muscle and liver damage-related indicators (ATL, ALP, LDH and CK) and muscle endurance, fatigue and exercise performance-related indicators (lactate and creatinine) were significantly improved by FA supplementation. In addition, FA regulates genes related to muscle protein degradation (Atrogin-1 and MuRF1) and muscle fiber synthesis (MyoD and Myf5), resulting in increased muscle mass, and fiber diameter and area values. The Bax/Bcl-2 ratio, related to apoptosis in skeletal muscle was significantly decreased. These results demonstrate that FA improves exercise performance with ameliorating blood biomarkers and also increases muscle mass and muscle strength by inhibiting muscle proteolysis and promoting muscle synthesis in a middle-aged mouse. Full article
(This article belongs to the Special Issue Functional Food and Nutrition)
Show Figures

Figure 1

12 pages, 3391 KiB  
Article
Fermented Antler Improves Endurance during Exercise Performance by Increasing Mitochondrial Biogenesis and Muscle Strength in Mice
by Seongeun Jung, Sung-Hwan Kim, Woonhee Jeung, Jehyun Ra, Keon Heo, Jae-Jung Shim and Jung-Lyoul Lee
Appl. Sci. 2021, 11(12), 5386; https://doi.org/10.3390/app11125386 - 10 Jun 2021
Cited by 9 | Viewed by 3919
Abstract
In this study, we investigated whether antler fermented with lactic acid bacteria (LAB) increases mitochondrial biogenesis and muscle strength in vitro and in vivo. LAB from a strain library were grown in antler extract agar at the Yakult Central Research Institute of Korea. [...] Read more.
In this study, we investigated whether antler fermented with lactic acid bacteria (LAB) increases mitochondrial biogenesis and muscle strength in vitro and in vivo. LAB from a strain library were grown in antler extract agar at the Yakult Central Research Institute of Korea. Isolated LAB, named Lactobacillus curvatus HY7602, were used to ferment antlers. Analysis of the effects of fermented antler (FA) revealed that it enhanced the insulin-like growth factor 1 (IGF-I), signaling pathway and mitochondrial metabolic activity in mouse skeletal myotube (C2C12) cells. Next, we evaluated the effect of non-fermented antler (NFA) and FA on exercise performance in C57BL/6J mice. The results showed that HY7602-FA increased treadmill exercise capacity and forced swimming endurance. Furthermore, blood markers associated with muscle fatigue, endurance, and energy supply (e.g., alanine aminotransferase, lactate dehydrogenase, creatinine, creatine kinase, and lactate) in the FA-intake group were lower than in the NFA-intake group. In addition, the expression index of genes associated with muscle protein synthesis, and with mitochondrial energy production and supply, in muscle tissue was remarkably higher in the FA group than in the control and NFA groups. Taken together, these results suggested that HY7602-FA may be an effective functional food and health supplement. Full article
(This article belongs to the Special Issue Functional Foods in Disease Prevention and Health Promotion)
Show Figures

Figure 1

Back to TopTop