Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = La2Ce2O7 (LC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 3003 KB  
Communication
Self-Assembled La0.67Sr0.33MnO3:CeO2 Vertically Aligned Nanocomposite Thin Films on Flexible Mica
by Hongxia Tian, Xiong Zhang, Abdullah Alodhayb, Feng Wang, Jie Jian and Jijie Huang
Crystals 2023, 13(11), 1595; https://doi.org/10.3390/cryst13111595 - 17 Nov 2023
Viewed by 1848
Abstract
Vertically aligned nanocomposite (VAN) thin film has attracted tremendous research interests owing to its multifunctionality, enhanced physical properties and multi-field coupling. However, VAN has rarely been demonstrated in flexible form, which hinders its further application in flexible devices. In this work, La0.67 [...] Read more.
Vertically aligned nanocomposite (VAN) thin film has attracted tremendous research interests owing to its multifunctionality, enhanced physical properties and multi-field coupling. However, VAN has rarely been demonstrated in flexible form, which hinders its further application in flexible devices. In this work, La0.67Sr0.33MnO3-CeO2 (LC) VAN film has been deposited on flexible mica with or without a buffer layer. The LC nanocomposite films show high quality following textured growth and form a typical, vertically aligned nanostructure. Magnetic, transport and magnetoresistance properties have been explored for flexible nanocomposite thin films. Furthermore, flexible LC films maintain their properties after numerous mechanical bending tests, presenting promising future applications in flexible electronics and spintronics. Full article
Show Figures

Figure 1

15 pages, 5178 KB  
Article
Synthesis and Characterization of Fluorite-Type La2Ce2O7 Plasma Sprayable Powder for TBCs Application
by Ivana Parchovianská, Milan Parchovianský, Beáta Pecušová, Ondrej Hanzel and Amirhossein Pakseresht
Materials 2022, 15(11), 4007; https://doi.org/10.3390/ma15114007 - 5 Jun 2022
Cited by 7 | Viewed by 3647
Abstract
This work focuses on the fabrication of lanthanum cerate (La2Ce2O7, LC) powders via two chemical routes: modified Pechini sol-gel method and solid-state synthesis. The synthesized LC powders were heat treated in the temperature range of 1000–1400 °C [...] Read more.
This work focuses on the fabrication of lanthanum cerate (La2Ce2O7, LC) powders via two chemical routes: modified Pechini sol-gel method and solid-state synthesis. The synthesized LC powders were heat treated in the temperature range of 1000–1400 °C for 6 h and investigated as a material for thermal barrier coating (TBC) applications. For this purpose, the powder morphology, chemical composition, crystal structure and thermal stability were studied. Scanning electron microscopy (SEM) of the synthesized powders revealed an agglomerated structure consisting of fine and uniformly distributed grains. Energy-dispersive X-ray spectroscopy (EDXS) indicated that the chemical compositions of the LC powders were similar to the stoichiometric ratio of La2Ce2O7. A cubic fluorite structure was observed by X-ray diffraction analysis (XRD) after calcining the LC powder prepared by solid-state synthesis at 1300 °C. In contrast, there was always a fluorite structure in the LC powder synthesized by the Pechini sol-gel method after heat treatment over the entire temperature range. The thermal behavior of the LC powders was analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) in the temperature range of 25–1300 °C. Neither an obvious mass change nor a visible energy change was observed within the tested temperature range, indicating high phase stability of the LC powder and its suitability for TBC applications. Spheroidization on the prepared LC powders was also investigated, revealing that powder size and morphology had a significant impact on the spheroidization efficiency. Full article
(This article belongs to the Special Issue Ceramic Materials: Processing, Properties and Applications)
Show Figures

Figure 1

16 pages, 3682 KB  
Article
Phase Evaluation, Mechanical Properties and Thermal Behavior of Hot-Pressed LC-YSZ Composites for TBC Applications
by Milan Parchovianský, Ivana Parchovianská, Ondrej Hanzel, Zuzana Netriová and Amirhossein Pakseresht
Materials 2022, 15(8), 2839; https://doi.org/10.3390/ma15082839 - 12 Apr 2022
Cited by 12 | Viewed by 2740
Abstract
In this work, La2Ce2O7-yttria-stabilized zirconia (LC-YSZ) composites with different weight fractions of YSZ (40–70 wt.%) were prepared by hot pressing at 1400 °C and investigated as a material for thermal barrier-coating (TBC) applications. For this purpose, the [...] Read more.
In this work, La2Ce2O7-yttria-stabilized zirconia (LC-YSZ) composites with different weight fractions of YSZ (40–70 wt.%) were prepared by hot pressing at 1400 °C and investigated as a material for thermal barrier-coating (TBC) applications. For this purpose, the effect of YSZ addition on the phase composition, microstructure, mechanical performance and thermal behavior was studied. X-ray diffraction analysis showed that the LC-YSZ composites were mainly composed of a cubic ZrO2 and La2O3-CeO2-ZrO2 solid solution with a pyrochlore structure, indicating that the reaction between LC and YSZ took place during hot pressing. Scanning electron microscopy revealed the high microstructural stability of the prepared composites, as the pore formation was significantly controlled and a high relative density (>97%) was obtained. The microstructure of LC-YSZ bulk samples was relatively fine-grained, with an average grain size below or very close to 1 µm. YSZ doping improved the Vickers hardness of the LC-YSZ composites; the highest hardness, with value of 12 ± 0.62 GPa, was achieved for the composite containing 70 wt.% of YSZ. The fracture toughness of LC-YSZ composites was in the range from 2.13 to 2.5 MPa·m1/2. No statistically significant difference in heat capacity or thermal conductivity was found between the composites with different content of YSZ. The results showed that LC-YSZ composites have relatively low thermal conductivities from room temperature (1.5–1.8 W·m−1·K−1) up to 1000 °C (2.5–3.0 W·m−1·K−1). This indicates that the prepared LC-YSZ composite materials are promising candidates for TBC applications. Full article
(This article belongs to the Special Issue Ultra-High Temperature Thermal Protection and Insulation Composites)
Show Figures

Figure 1

13 pages, 5550 KB  
Article
Preparation and Thermal Shock Resistance of Gd2O3 Doped La2Ce2O7 Thermal Barrier Coatings
by Lihua Gao, Fang Jia and Xiaoliang Lu
Coatings 2021, 11(10), 1186; https://doi.org/10.3390/coatings11101186 - 29 Sep 2021
Cited by 4 | Viewed by 2417
Abstract
As one of the promising thermal barrier coating (TBC) candidates, stoichiometric (La0.8Gd0.2)2Ce2O7 (LGC) coatings were prepared by atmospheric plasma spraying (APS), using (La0.8Gd0.2)2Ce2.5O8 as a [...] Read more.
As one of the promising thermal barrier coating (TBC) candidates, stoichiometric (La0.8Gd0.2)2Ce2O7 (LGC) coatings were prepared by atmospheric plasma spraying (APS), using (La0.8Gd0.2)2Ce2.5O8 as a spray powder and optimized spray parameters. It was found that spray distance and spray power both play an important role in the phase composition and microstructure of the coating. The LGC coating exhibited lower thermal conductivities than that of La2Ce2O7 (LC) coating, which is ~0.67 W/m·K at 1200 °C. Double-ceramic-layer (DCL) optimum (La0.8Gd0.2)2Ce2O7/YSZ (LGC/YSZ) thermal barrier coating was prepared and its thermal shock behavior was investigated. The LGC/YSZ DCL TBCs had better thermal shock resistance ability than that of LC/YSZ TBCs, which was around 109 cycles at 1100 °C. However, the failure mode was similar to that of LC/YSZ DCL TBCs, which was still layer-by-layer spallation in the top ceramic layer due to the sintering of the ceramic coating. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

14 pages, 24444 KB  
Article
LC/8YSZ TBCs Thermal Cycling Life and Failure Mechanism under Extreme Temperature Gradients
by Kun Liu, Xi Chen, Kangping Du, Yu Wang, Jinguang Du, Xinsheng Wang and Wuyi Ming
Coatings 2021, 11(9), 1051; https://doi.org/10.3390/coatings11091051 - 31 Aug 2021
Cited by 5 | Viewed by 3010
Abstract
The purpose of this paper is to study the thermal shock resistance and failure mechanism of La2Ce2O7/8YSZ double-ceramic-layer thermal barrier coatings (LC/8YSZ DCL TBCs) under extreme temperature gradients. At high surface temperatures, thermal shock and infrared temperature [...] Read more.
The purpose of this paper is to study the thermal shock resistance and failure mechanism of La2Ce2O7/8YSZ double-ceramic-layer thermal barrier coatings (LC/8YSZ DCL TBCs) under extreme temperature gradients. At high surface temperatures, thermal shock and infrared temperature measuring modules were used to determine the thermal cycling life and insulation temperature of LC/8YSZ DCL TBCs under extreme temperature gradients by an oxygen–acetylene gas flame testing machine. A viscoelastic model was used to obtain the stress law of solid phase sintering of a coating system using the finite element method. Results and Conclusion: (1) Thermal cycling life was affected by the surface temperature of LC/8YSZ DCL TBCs and decreased sharply with the increase of surface temperature. (2) The LC ceramic surface of the failure coating was sintered, and the higher the temperature, the faster the sintering process. (3) Accelerated life test results showed that high temperature thermal cycling life is not only related to thermal fatigue of ceramic layer, but is also related to the sintering degree of the coating. (4) Although the high temperature thermal stress had great influence on the coating, great sintering stress was produced with sintering of the LC ceramic layer, which is the main cause of LC/8YSZ DCL TBC failure. The above results indicate that for new TBC ceramic materials, especially those for engines above class F, their sinterability should be fully considered. Sintering affects the thermal shock properties at high temperature. Our research results can provide reference for material selection and high temperature performance research. Full article
Show Figures

Figure 1

13 pages, 5528 KB  
Article
Correlation of Feedstock Powder Characteristics with Microstructure, Composition, and Mechanical Properties of La2Ce2O7 Coatings Produced by Plasma Spray-Physical Vapor Deposition
by Cong Zhao, Wenting He, Jian He, Liangliang Wei and Hongbo Guo
Coatings 2020, 10(2), 93; https://doi.org/10.3390/coatings10020093 - 22 Jan 2020
Cited by 8 | Viewed by 2967
Abstract
By virtue of plasma spray-physical vapor deposition (PS-PVD) process, coatings in possession of columnar structures can be obtained by suitable processing parameters coupled with specially designed powder feedstock. In this paper, the influence of powder characteristics on the La2Ce2O [...] Read more.
By virtue of plasma spray-physical vapor deposition (PS-PVD) process, coatings in possession of columnar structures can be obtained by suitable processing parameters coupled with specially designed powder feedstock. In this paper, the influence of powder characteristics on the La2Ce2O7 (LC) coating microstructures was investigated by using three kinds of feedstock powders with same PS-PVD processing parameters. It was found that small agglomerated feedstock, weak binding strength, and small primary particle sizes can enhance the feedstock evaporation rate, thus obtaining well columnar structured coatings. X-ray diffraction (XRD) patterns revealed that except for a very small amount of La2O3 the main phase of all the coatings is LC. The La/Ce atomic ratios reduced in the coatings compared to the feedstocks, especially the coatings with better columnar structure. Super-lattice patterns were observed by transmission electron microscope (TEM), which means that the LC phase is supposed to be pyrochlore structure. Furthermore, the mechanical properties evaluated by nano-indentation tests indicated that both the hardness and Young’s modulus of each coating show negative correlations with the porosity inside the columns. Full article
(This article belongs to the Special Issue Plasma Surface Engineering)
Show Figures

Figure 1

Back to TopTop