Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Korus-AQ campaign

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3510 KiB  
Article
Nocturnal Boundary Layer Height Uncertainty in Particulate Matter Simulations during the KORUS-AQ Campaign
by Hyo-Jung Lee, Hyun-Young Jo, Jong-Min Kim, Juseon Bak, Moon-Soo Park, Jung-Kwon Kim, Yu-Jin Jo and Cheol-Hee Kim
Remote Sens. 2023, 15(2), 300; https://doi.org/10.3390/rs15020300 - 4 Jan 2023
Cited by 9 | Viewed by 2658
Abstract
Vertical mixing in the planetary boundary layer (PBL) is an important factor in the prediction of particulate matter (PM) concentrations; however, PBL height (PBLH) in the stable atmosphere remains poorly understood. In particular, the assessment of uncertainties related to nocturnal PBLH (nPBLH) is [...] Read more.
Vertical mixing in the planetary boundary layer (PBL) is an important factor in the prediction of particulate matter (PM) concentrations; however, PBL height (PBLH) in the stable atmosphere remains poorly understood. In particular, the assessment of uncertainties related to nocturnal PBLH (nPBLH) is challenging due to the absence of stable atmosphere observations. In this study, we explored nPBLH–PM2.5 interactions by comparing model results and observations during the Korea–United States Air Quality Study (KORUS-AQ) campaign (1–31 May 2016). Remote sensing measurements (e.g., aerosol and wind Doppler lidar) and on-line WRF-Chem modeling results were used by applying three different PBL parameterizations: Yonsei University (YSU), Mellor–Yamada–Janjic (MYJ), and Asymmetrical Convective Model v2 (ACM2). Our results indicated that the uncertainties of PBLH–PM interactions were not large in daytime, whereas the uncertainties of nPBLH–PM2.5 interactions were significant. All WRF-Chem experiments showed a clear tendency to underestimate nighttime nPBLH by a factor of ~3 compared with observations, and shallow nPBLH clearly led to extremely high PM2.5 peaks during the night. These uncertainties associated with nPBLH and nPBLH–PM2.5 simulations suggest that PM2.5 peaks predicted from nighttime or next-morning nPBLH simulations should be interpreted with caution. Additionally, we discuss uncertainties among PBL parameterization schemes in relation to PM2.5 simulations. Full article
Show Figures

Graphical abstract

13 pages, 26860 KiB  
Article
Vertical Characteristics of Secondary Aerosols Observed in the Seoul and Busan Metropolitan Areas of Korea during KORUS-AQ and Associations with Meteorological Conditions
by Jong-Min Kim, Hyo-Jung Lee, Hyun-Young Jo, Yu-Jin Jo and Cheol-Hee Kim
Atmosphere 2021, 12(11), 1451; https://doi.org/10.3390/atmos12111451 - 2 Nov 2021
Cited by 8 | Viewed by 2542
Abstract
In this study, the chemical components of aerosols observed at ground level and in upper layers during the Korea–United States Air Quality (KORUS-AQ) campaign were analyzed in two representative metropolitan areas of Korea: the Seoul metropolitan area (SMA) and the Busan-containing southeastern metropolitan [...] Read more.
In this study, the chemical components of aerosols observed at ground level and in upper layers during the Korea–United States Air Quality (KORUS-AQ) campaign were analyzed in two representative metropolitan areas of Korea: the Seoul metropolitan area (SMA) and the Busan-containing southeastern metropolitan area (BMA). First, we characterized emissions using the Clean Air Policy Support System (CAPSS) emission statistics, and compared them with both ground- and aircraft-based measurements obtained during the KORUS-AQ campaign. The emission statistics showed that the SMA had higher NOx levels, whereas BMA had significantly higher SO2 levels. Ground-level observations averaged for the summer season also showed SMA–nitrate and BMA–sulfate relationships, reflecting the CAPSS emission characteristics of both areas. However, organic carbon (OC) was higher in BMA than SMA by a factor of 1.7, despite comparable volatile organic compound (VOC) emissions in the two areas. DC-8 aircraft-based measurements showed that, in most cases, nitrogen-rich localities were found in the SMA, reflecting the emission characteristics of precursors in the two sampling areas, whereas sulfur-rich localities in the BMA were not apparent from either ground-based or aircraft observations. KORUS-AQ measurements were classified according to two synoptic conditions, stagnant (STG) and long-range transport (LRT), and the nitrate-to-sulfate (N/S) ratio in both ground and upper layers was higher in the SMA for both cases. Meanwhile, organic aerosols reflected local emissions characteristics in only the STG case, indicating that this stagnant synoptic condition reflect local aerosol characteristics. The LRT case showed elevated peaks of all species at altitudes of 1.0–3.5 km, indicating the importance of LRT processes for predicting and diagnosing aerosol vertical distributions over Northeast Asia. Other chemical characteristics of aerosols in the two metropolitan areas were also compared. Full article
(This article belongs to the Special Issue Influence of Sea Breeze on Urban Meteorology)
Show Figures

Figure 1

28 pages, 10863 KiB  
Article
Sensitivity of Simulated PM2.5 Concentrations over Northeast Asia to Different Secondary Organic Aerosol Modules during the KORUS-AQ Campaign
by Hyo-Jung Lee, Hyun-Young Jo, Chang-Keun Song, Yu-Jin Jo, Shin-Young Park and Cheol-Hee Kim
Atmosphere 2020, 11(9), 1004; https://doi.org/10.3390/atmos11091004 - 20 Sep 2020
Cited by 22 | Viewed by 4215
Abstract
A numerical sensitivity study on secondary organic aerosol formation has been carried out by employing the WRF-Chem (Weather Research and Forecasting model coupled with Chemistry). Two secondary organic aerosol formation modules, the Modal Aerosol Dynamics model for Europe/Volatility Basis Set (MADE/VBS) and the [...] Read more.
A numerical sensitivity study on secondary organic aerosol formation has been carried out by employing the WRF-Chem (Weather Research and Forecasting model coupled with Chemistry). Two secondary organic aerosol formation modules, the Modal Aerosol Dynamics model for Europe/Volatility Basis Set (MADE/VBS) and the Modal Aerosol Dynamics model for Europe/Secondary Organic Aerosol Model (MADE/SORGAM) were employed in the WRF-Chem model, and surface PM2.5 (particulate matter less than 2.5 μm in size) mass concentration and the composition of its relevant chemical sources, i.e., SO42−, NO3, NH4+, and organic carbon (OC) were simulated during the Korea-United States Air Quality (KORUS-AQ) campaign period (1 May to 12 June 2016). We classified the KORUS-AQ period into two cases, the stagnant period (16–21 May) which was dominated by local emission and the long-range transport period (25–31 May) which was affected by transport from the leeward direction, and focused on the differences in OC secondary aerosol formation between two modules over Northeast Asia. The simulated surface PM2.5 chemical components via the two modules showed the largest systematic biases in surface OC, with a mean bias of 4.5 μg m−3, and the second largest in SO42− abundance of 2.2 μg m−3 over Seoul. Compared with surface observations at two ground sites located near the western coastal Korean Peninsula, MADE/VBS exhibited the overpredictions in OC by 170–180%, whereas MADE/SORGAM showed underpredictions by 49–65%. OC and sulfate via MADE/VBS were simulated to be much higher than that simulated by MADE/SORGAM by a factor of 2.8–3.5 and 1.5–1.9, respectively. Model verification against KORUS-AQ aircraft measurements also showed large discrepancies in simulated non-surface OC between the two modules by a factor of five, with higher OC by MADE/VBS and lower IC by MADE/SORGAM, whereas much closer MADE/VBS simulations to the KORUS-AQ aircraft measurements were found. On the basis of the aircraft measurements, the aggregated bias (sum of four components) for PM2.5 mass concentrations from the MADE/VBS module indicated that the simulation was much closer to the measurements, nevertheless more elaborate analysis on the surface OC simulation performance would be needed to improve the ground results. Our findings show that significant inconsistencies are present in the secondary organic aerosol formation simulations, suggesting that PM2.5 forecasts should be considered with great caution, as well as in the context of policymaking in the Northeast Asia region. Full article
(This article belongs to the Special Issue Regional Air Quality Modeling)
Show Figures

Figure 1

Back to TopTop