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Abstract: Vertical mixing in the planetary boundary layer (PBL) is an important factor in the predic-
tion of particulate matter (PM) concentrations; however, PBL height (PBLH) in the stable atmosphere
remains poorly understood. In particular, the assessment of uncertainties related to nocturnal
PBLH (nPBLH) is challenging due to the absence of stable atmosphere observations. In this study,
we explored nPBLH–PM2.5 interactions by comparing model results and observations during the
Korea–United States Air Quality Study (KORUS-AQ) campaign (1–31 May 2016). Remote sensing
measurements (e.g., aerosol and wind Doppler lidar) and on-line WRF-Chem modeling results
were used by applying three different PBL parameterizations: Yonsei University (YSU), Mellor–
Yamada–Janjic (MYJ), and Asymmetrical Convective Model v2 (ACM2). Our results indicated that
the uncertainties of PBLH–PM interactions were not large in daytime, whereas the uncertainties of
nPBLH–PM2.5 interactions were significant. All WRF-Chem experiments showed a clear tendency
to underestimate nighttime nPBLH by a factor of ~3 compared with observations, and shallow
nPBLH clearly led to extremely high PM2.5 peaks during the night. These uncertainties associated
with nPBLH and nPBLH–PM2.5 simulations suggest that PM2.5 peaks predicted from nighttime or
next-morning nPBLH simulations should be interpreted with caution. Additionally, we discuss
uncertainties among PBL parameterization schemes in relation to PM2.5 simulations.

Keywords: nocturnal boundary layer height; particulate matter simulation; Korus-AQ campaign;
PBL parameterization scheme

1. Introduction

Particulate matter (PM) has a substantial impact on the environment, including
changes in climate and air quality [1,2]. In recent years, PM has been recognized as a
significant air pollutant associated with transboundary pollution over Northeast Asia [3,4];
PM emitted from source regions can cause significantly high PM concentrations over recep-
tor regions through long-range transport influenced by meteorological factors. In particular,
PM with an aerodynamic diameter of <2.5 µm (PM2.5) can cause asthma and cardiovascular
diseases; it is associated with serious risks to human health [5–7]. Thus, numerous studies
have explored the formation and behaviors of PM2.5 and its sources [8,9].

The planetary boundary layer (PBL), the lowest part of the troposphere, is directly
influenced by the presence of the Earth’s surface. Because of strong surface forcing, PBL
is among the most important factors that influence the vertical distribution and secondary
formation of PM2.5 at multiple temporal scales, ranging from diurnal to seasonal [10]. Thus,
the effects of surface friction, heating, and cooling cause significant heat, mass, moisture, and
momentum exchange through turbulent motions within the PBL height (PBLH) [11]. The
three main segments of the PBL are the convective boundary layer, stable boundary layer

Remote Sens. 2023, 15, 300. https://doi.org/10.3390/rs15020300 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15020300
https://doi.org/10.3390/rs15020300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-3943-2671
https://orcid.org/0000-0002-0421-671X
https://orcid.org/0000-0003-0551-5129
https://orcid.org/0000-0002-2967-4987
https://doi.org/10.3390/rs15020300
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15020300?type=check_update&version=1


Remote Sens. 2023, 15, 300 2 of 13

(SBL), and residual layer. After sunset, the SBL forms near the Earth’s surface because of
surface cooling, whereas the upper portion of the formerly mixed layer becomes the residual
layer (i.e., a neutral or weakly mixed layer that usually appears above the SBL at night) [11].

In meteorological models, PBL variables must be parameterized through the deter-
mination of turbulent properties; thus, pollutant concentration model results are highly
dependent on PBL and turbulence parameterization methods. Because of the complexity
involved in turbulence properties, previous studies have used model–observation compari-
son analyses to reduce model uncertainties associated with the vertical mixing of pollutants;
thus, PBL–PM2.5 interactions are important for identifying the vertical distribution and
secondary formation of PM2.5. In addition to the mixing process, chemical reactions such
as the nocturnal heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) reportedly plays
an important role in nighttime nitrate (NO3

−) formation in urban areas, a process that
sometimes influences the occurrence of heavy PM2.5 pollution during the night and the
subsequent day [12–15].

Various PBL parameterizations (non-local and local schemes) are available for the
Weather Research and Forecasting (WRF) model, which is used for PM2.5 simulations [16–20].
Non-local PBL schemes for the WRF model, such as the Yonsei University (YSU) scheme,
impose a vertical profile of the eddy diffusivity coefficient based on the diagnosed PBLH,
with the magnitude of the eddy diffusivity coefficient approaching zero at altitudes above
the PBLH. After sunset, the SBL begins to develop, and the convective boundary layer
above the SBL becomes the residual layer with weaker mixing. However, SBL-based es-
timations of the eddy diffusivity coefficient in air quality models lead to poor air quality
simulation accuracy during the night, disrupting the nocturnal NO3

− formation processes
(e.g., Li et al., 2021 [21]). Despite the erroneous results obtained under stable atmospheric
conditions as mentioned above, uncertainties associated with the nocturnal PBLH (nPBLH)
and vertical mixing of the PM have not been fully evaluated in a quantitative manner,
mainly due to the absence of vertical measurements and the observational limitations
of turbulence properties. Therefore, it remains useful to fully explore the evidence from
comparisons of model results and observations, with the goal of supporting nPBLH charac-
terizations to improve simulations.

In this study, we investigated the effects of vertical mixing during interactions between
PM2.5 and both daytime and nighttime PBLH observed during the Korea–United States Air
Quality Study (KORUS-AQ) campaign (1–31 May 2016). KORUS-AQ was an international
multi-organizational mission co-organized by the Korean National Institute of Environ-
mental Research (NIER) and the National Aeronautics and Space Administration (NASA),
in which comprehensive aircraft and ground measurements were conducted to observe
air quality over the Korean Peninsula and surrounding areas [22–24], mainly targeting the
Seoul metropolitan area (SMA) and nearby urban areas in the Korean Peninsula. Using
ground sensing observations collected during KORUS-AQ, we conducted several model
sensitivity experiments with three different PBL parameterization schemes: non-local
(YSU), local (Mellor–Yamada–Janjic, MYJ), and hybrid (Asymmetrical Convective Model
version 2, ACM2). We explored modeled and observed nPBLH–PM2.5 interactions, including
uncertainties determined in PM simulations of the stable atmosphere over the SMA.

2. Data and Methods
2.1. Model, Domain, Configurations, and Emissions

We used the WRF with chemistry model (WRF-Chem) v3.8.1 to simulate PM2.5 con-
centrations during the KORUS-AQ campaign. We used three nested domains: D01 (grid
spacing, 27 km), D02 (9 km), and D03 (3 km). The horizontal domains D01–D03 targeted
East China, the Korean Peninsula, and the SMA, respectively (Figure 1); 30 layers were
used for vertical resolution. All grids in the WRF-Chem model domain were defined
on a Lambert conformal conic projection centered at 38◦ N, 126◦ E, with true latitudes
at 30◦ N and 60◦ N. The meteorological initial and boundary conditions were obtained
from UK Met Office Unified Model global forecasts operated by the Korean Meteorological
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Administration, with a spatial resolution of ~25 km and a temporal resolution of 3 h. The
detailed meteorology and air quality model settings are presented in Table 1.
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Figure 1. Three nested domains were implemented in the Weather Research and Forecasting regional
air quality and chemistry model (WRF-Chem): D01 (grid spacing, 27 km; Northeast Asia), D02
(9 km; Korean Peninsula), and D03 (3 km; South Korea). Three planetary boundary layer height
(PBLH) observation sites are shown: Gwanak (P1), Gwangjin (P2), and Jungnang (P3). An air quality
measurement site (Bulgwang) is also shown.

The emissions data used for WRF-Chem simulations in this study were obtained
from the latest KORUS-AQ anthropogenic emission inventory (KORUSv2), which was
updated using data collected after the initial KORUS-AQ campaign. The KORUSv1
emission inventory was developed based on the Comprehensive Regional Emissions for
Atmospheric Transport Experiment (CREATE) emissions dataset, which was based on
combined inventories from 29 Asian countries, primarily including the Regional Emis-
sion Inventory in Asia (REAS) [25], Multi-resolution Emission Inventory China (MEIC)
(http://www.meicmodel.org: accessed on 1 January 2023), Japan Auto–Oil Program Emis-
sion Inventory (JATOP), and Korean Clear Air Policy Support System (CAPSS) [26]. De-
tailed descriptions of the development of the KORUS emission inventories were provided
by Woo et al. (2017) [27] and Yang et al. (2020) [28]. Although the WRF-Chem model also
calculates biogenic emissions at each simulation time step during model integration, we
pre-calculated biogenic emissions and used identically forced biogenic emissions under
matching conditions in each of the three PBL sensitivity experiments.

Table 1. Summary of physical and chemical options used in Weather Research and Forecasting
regional air quality and chemistry model (WRF-Chem) simulations in this study.

Physics Option Adopted Scheme

Microphysics Lin et al. scheme
Longwave radiation Rapid radiative transfer model (RRTM)
Shortwave radiation Goddard

Surface layer Monin–Obukhov similarity
Land surface Noah Land Surface Model

Planetary boundary layer Yonsei University scheme (YSU)/Mellor-Yamada-Janjic
(MYJ)/Asymmetric Convective Model, version 2 (ACM2)

Cumulus parameterizations Grell 3-D

http://www.meicmodel.org
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Table 1. Cont.

Chemistry option Adopted scheme

Photolysis Madronich photolysis (TUV)
Gas phase chemistry NOAA/ESRL Regional Atmospheric Chemistry (RACM)

Aerosols Modal Approach Dynamics model for Europe/Volatility Basis
Set (MADE/VBS)

Anthropogenic emissions KORUS v2

Biogenic emissions Model of Emissions of Gases and Aerosols from Nature
(MEGAN) v2.04

2.2. PBLH and Ground PM2.5 Measurements during the KORUS-AQ Campaign

KORUS-AQ and its pre-campaign MAPS-2015 collected comprehensive, detailed
measurements of pollutants (e.g., trace gases and aerosol particles) using aircraft, ground
sites, and ships with extensive spatial and vertical coverage from 1 May through 12 June,
2016. During the campaign, aircraft measurements were made for the mass concentrations
of PM2.5 and its chemical components; the details of aircraft measurements and ground
observations have been described in numerous previous publications [29–35]. Because no
aircraft measurements were made at night, remote ground measurements of PBLH and
ground measurements of PM2.5 species were used in this study. PBLH data obtained at
three sites (P1–P3) were retrieved from two remote sensing instruments: elastic aerosol lidar
(AL) and wind Doppler lidar (WDL). The AL sites were located at Gwanak (P1; operated at
Seoul National University) and Jungnang (P3; operated at the Weather Information Service
Engine center); the WDL site was located at Gwangjin (P2; operated at the Seoul Institute
of Health and Environment). PBLHs were routinely measured at time intervals of 15 min
(at P1 and P2) and 1 h (at P3).

PBLHs and aerosol vertical distributions were retrieved from AL measurements using
a wavelet algorithm that inferred aerosol characteristics from measured backscattering and
polarization extinctions. In wavelet method, PBLH was determined as the height of sharp
decrease in range-corrected backscattered intensity (β) from its vertical profile, and the Haar
function was used to define sharp increases or decreases in the signal [36,37]. In this method,
the PBLHs were defined as the lowest local maximum peak in the wavelet covariance profile
where sharp decreases exist in the β that was identified by local maximum peaks of the
wavelet covariance profile. Other aerosol characteristics (e.g., aerosol type classification,
aerosol dissipation coefficient, aerosol mass concentration, and cloud base height) were also
estimated from AL, but they were not retrieved when clouds were present within 2 km.

WDLs estimate PBLH in more direct approach since they directly measure the vertical
wind velocity instead of vertical mixing [38,39]. WDL is primarily used to estimate wind
speed profiles; it detects the wavelengths of signals backscattered from moving aerosols
through the Doppler effect. WDL can also be used to measure the PBLH because it traces
Doppler shifts caused by wind-derived aerosol movement and detects the outgoing aerosol
signal, allowing the retrieval of wind speed [40]. We used WDL data to distinguish the
nPBLH from the residual layer by applying the vertical wind profile. Prior to the use of WDL
measurements, we screened wind measurements based on the signal-to-noise ratio. In this
framework, PBLH can be estimated using a threshold value for vertical velocity standard
deviation, σw, which was calculated based on the method of Schween et al. (2014) [41].
PBLH was then defined using a threshold value of 0.2 m/s [39] as the first height where
σw drops below the threshold value. Detailed descriptions of algorithms of PBLH from
AL and WDL, including data filtering criteria and data assurance, were provided by
Park et al. (2021) [42] and Park et al. (2022) [43].

Ground PM2.5 measurements were conducted at Bulgwang (126.98◦ E, 37.61◦ N, 67 m
a.s.l.) (Figure 1), which is close to the Jungnang site (P3). The Bulgwang site, operated by
the Korean National Institute of Environmental Research, is a comprehensive measurement
site for the concentrations of PM2.5 and its chemical components (e.g., sulfate, NO3

−,
ammonium salt, organic aerosols, and gaseous precursors). For detailed analysis of PBLH–
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PM2.5 interactions, we used PM2.5 concentrations that had been measured at 1-h intervals
with a β-ray attenuation mass monitor (BAM-1020; Met One, Grants Pass, OR, USA).

2.3. PBL Parameterizations and Sensitivity Experiment Setup

To characterize PBLH–PM2.5 interactions, we simulated PBLH and PM2.5 concen-
trations using the WRF-Chem model. We selected three typical PBL parameterizations:
YSU, MYJ, and ACM2. The MYJ scheme is a local scheme with 1.5th-order turbulence
closure; it determines the eddy diffusivity coefficient through the prognostic turbulence
kinetic energy equation. The entrainment process at the top of the PBL is expressed as a
function of the counter-gradient flux term characterized by large-scale eddies. Generally,
MYJ shows reasonable simulation performance in a stable or weakly unstable atmosphere,
as characterized by the properties of smaller eddies, but it often underestimates the PBLH
in the presence of strong upward flow derived from convective turbulence activity. In
contrast, YSU is a non-local scheme [44] that improves the Medium Range Forecast (MRF)
scheme by enabling simulation of the shallow surface layer, where MRF cannot be applied.
In the presence of strong convection in an unstable atmosphere, non-local processes are
appropriate for determination of the PBLH; however, local static stability can be used to
estimate the PBLH in stable conditions solely via diagnosis of the local lapse rate. The
ACM2 scheme is a hybrid approach for estimation of the PBLH with non-local upstream
flux in an unstable atmosphere and local downmixing in a stable atmosphere. A schematic
diagram of these local and non-local PBL parameterizations is shown in Figure 2.
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In terms of sensitivity experiments, we used identical meteorological physics options
for three PBL mechanisms in the WRF-Chem model, then performed three PBL sensitivity
simulations for the KORUS-AQ campaign period (1–31 May 2016). All options with the
same meteorological components of the physics schemes (e.g., both grid- and sub-grid-scale
parameterizations) were set to identical values, and only the three PBL parameterizations
were varied. These model configurations allowed the detection of any inconsistencies
arising from PBL parameterizations alone. A 7-day period was used for spin-up, and
the WRF-Chem was run for the three PBL options to evaluate model uncertainties in the
simulation of PM2.5 concentrations over the SMA.
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3. Results
3.1. Comparison of PM2.5 Simulation Results with Observations

The PBLH and PM2.5 simulation results for the three PBL schemes at four sites (P1~P3
plus Bulgwang site) were evaluated according to the root mean square error (RMSE)

(=[∑ (Mi −Oi)
2/N]

1/2
), normalized mean bias (NMB)(=∑ (Mi −Oi)/ ∑ Oi), normalized

mean error (NME) (=∑ |Mi −Oi|/ ∑ Oi), Pearson correlation coefficient

(R)(=
[

∑
(

Mi −M
)(

Oi −O
)
]/[∑ [(Mi −M)

2
∑ (Oi −O)

2
]
1/2

]
), Index of Agreement

(IOA)(=1−∑
(

Mi
′ −Oi

′)2/ ∑ (
∣∣Mi

′∣∣−∣∣Oi
′∣∣) 2), and other statistics (Table S1 and Figure 1).

Here N is the number of pairs of observations/simulations, Mi is the model simulations,
Oi is the observations, and M and O represent the simulated and observed means, and M’
and O’ represent Mi −M and Oi −O, respectively.

For PM2.5, the highest values of R (0.51) and index of agreement (0.66) were obtained
using the ACM2 scheme; the lowest IOA and R values were obtained using the MYJ
scheme. The three schemes simulated PM2.5 with fair IOA (0.61~0.66), but in general
showed an underestimation with NMB values within −35~−30%. The root mean square
error, NMB, and NME results showed similar patterns, with no significant differences
among the three schemes (Table S1). Other criteria suggested by Emery et al. (2017) [46]
and Choi et al. (2019) [47] are listed in Table S1 and shown Figure S1.

The observed and simulated hourly variations in PM2.5 mass concentration at the
Bulgwang site during 1–31 May 2016, are shown in Figure 3. All three schemes captured
the overall diurnal and weekly variations in surface PM2.5, with lower concentrations
during 22–28 May. Simulation results were higher during 9–18 May (Figure 3); however, no
detectable biases were observed among the three PBL schemes during this period. Overall,
simulated PM2.5 mass concentrations showed temporal variations similar to the variations
observed among the three schemes. We also assessed chemical components such as SO4

2–,
NO3

–, NH4
+, and organic carbon, with similar results among the three experiments (not

shown here) and no particular biases.
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observations (green) and WRF-Chem simulations from three different PBL parameterizations: Yonsei
University (YSU, pink), Asymmetrical Convective Model v2 (ACM2, blue), and Mellor–Yamada–Janjic
(MYJ, orange). Gray shaded area indicates nighttime (21:00–6:00 LST).

Notably, the three experiments often showed significant nighttime PM2.5 concentration
peaks (i.e., 18–19 May and 21–23 May). We speculate that the simulated PM2.5 concen-
trations were significantly overestimated, reflecting a shallow nPBLH of several tens of
meters; moreover, significantly lower vertical mixing may be the result of shallow sim-
ulated nPBLH, which yielded peaks of nocturnal PM2.5 concentration peaks that were
~50 ug/m3 higher than observations (i.e., 18 May and 29 May). This result was clearly
caused by extreme lower vertical mixing activity in the stable near-surface atmosphere.
Further detailed analyses of the causes of nPBLH underestimation are thus needed to
identify nocturnal turbulence intensities.

3.2. Comparison of PBLH Simulated Results with Observations

We also compared PBLH observations among the three measurement sites (P1–P3)
and confirmed similar trends, with no significant differences except for a few nocturnal
periods (lower at P3 on 19 May and 21–22 May) (Figure S2). The causes of these anomalies
were previously discussed by Park et al. [43]; in this study, we presumed that these biases
would not change the results of current study.

The time series of PBLH observed at P1 during the study period is compared with the
time series of the three simulations in Figure 4. The models generally performed well in
terms of simulating diurnal variations, and the results of the three sensitivity experiments
were in good agreement, such that WRF-Chem overestimated the PBLH only on 21–23 May;
PBLH values obtained from AL sometimes reached 1.8–2 km.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 4. Comparison of PBLH between observations at P1 (Gwanak; gray) and simulated values 
obtained using the YSU (pink), ACM2 (blue), and MYJ (orange) parameterization schemes in the 
WRF-Chem model. Gray shaded area indicates nighttime (21:00–6:00 LST). 

To more fully characterize the nPBLH uncertainties, we examined the large discrep-
ancies in terms of nPBLH–PM2.5 interactions for 18–21 May and 28–31 May (Figure 5). The 
results showed that most daytime simulations with high discrepancies were underestima-
tions, such as the simulations on 20 May (12:00–18:00 LST), 28 May (6:00–12:00 LST), and 
29 May (6:00–18:00 LST), although PM2.5 simulations were less sensitive to PBLH overes-
timations during the daytime. In contrast, nighttime simulations showed the opposite 
trend. WRF-Chem simulated significantly lower nPBLHs, reaching 10 m in some periods: 
18 May (0:00–6:00 LST), 18 May (18:00 LST) to 19 May (6:00 LST), 19 May (18:00 LST) to 20 
May (6:00 LST), and 28 May (18:00 LST) to 29 May (6:00 LST). Accordingly, strong corre-
lations were observed between nPBLH underestimation and nighttime PM2.5 overestima-
tion. Compared with daytime PM2.5, nighttime PM2.5 was more strongly sensitive to the 
nPBLH (i.e., 0:00–3:00 LST on 19 May and 29 May). The shallow nPBLH caused all three 
simulated PM2.5 concentrations to be higher, such that they were more than twofold 
greater than observed values. This inverse correlation between nPBLH and PM2.5 appears 
to be a prerequisite factor for acceptable urban PM2.5 predictions over the SMA. 

Figure 4. Comparison of PBLH between observations at P1 (Gwanak; gray) and simulated values
obtained using the YSU (pink), ACM2 (blue), and MYJ (orange) parameterization schemes in the
WRF-Chem model. Gray shaded area indicates nighttime (21:00–6:00 LST).

To more fully characterize the nPBLH uncertainties, we examined the large discrepan-
cies in terms of nPBLH–PM2.5 interactions for 18–21 May and 28–31 May (Figure 5). The
results showed that most daytime simulations with high discrepancies were underestima-
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tions, such as the simulations on 20 May (12:00–18:00 LST), 28 May (6:00–12:00 LST), and
29 May (6:00–18:00 LST), although PM2.5 simulations were less sensitive to PBLH over-
estimations during the daytime. In contrast, nighttime simulations showed the opposite
trend. WRF-Chem simulated significantly lower nPBLHs, reaching 10 m in some periods:
18 May (0:00–6:00 LST), 18 May (18:00 LST) to 19 May (6:00 LST), 19 May (18:00 LST) to
20 May (6:00 LST), and 28 May (18:00 LST) to 29 May (6:00 LST). Accordingly, strong
correlations were observed between nPBLH underestimation and nighttime PM2.5 over-
estimation. Compared with daytime PM2.5, nighttime PM2.5 was more strongly sensitive
to the nPBLH (i.e., 0:00–3:00 LST on 19 May and 29 May). The shallow nPBLH caused all
three simulated PM2.5 concentrations to be higher, such that they were more than twofold
greater than observed values. This inverse correlation between nPBLH and PM2.5 appears
to be a prerequisite factor for acceptable urban PM2.5 predictions over the SMA.
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3.3. Uncertainties in Nocturnal PBLH Simulations

We sought to further characterize the uncertainty in nPBLH–PM2.5 interactions by
separately comparing daytime (9:00–18:00 LST) and nighttime (21:00–06:00 LST) observa-
tions and simulations. Scatter diagrams of the results are shown in Figure 6. As expected,
daytime simulations showed comparatively better agreement with observations, relative to
nighttime simulations (Figure 6); correlation coefficients (R) were 0.51–0.61. Among the
three experiments, the YSU scheme showed better performance for daytime simulations
(R = 0.62), compared with ACM2 (R = 0.56) or MYJ (R = 0.51). However, at night, poor
correlations were observed between observations and simulations (R = ~0.12), suggest-
ing considerable model uncertainties in our nPBLH simulations. The observed nPBLHs
were approximately 598 ± 124 m and the simulated values were considerably lower
(213 ± 188 m [YSU], 193 ± 155 m [MYJ], and 245 ± 215 m [ACM2]), indicating underes-
timation by a factor of ~3. The ACM2 scheme showed better nighttime performance in
terms of simulating nPBLH (R = 0.11), compared with YSU (R = 0.004) or MYJ (R = 0.001).
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In previous studies, non-local PBL schemes outperformed local schemes for daytime PBLH,
particularly when large eddies and buoyancies were closely associated; local schemes
generally outperformed non-local schemes for nighttime nPBLH, particularly when small
eddies and molecular diffusion processes were better characterized on the basis of wind
shear-generated mechanical turbulences in the near-surface atmosphere [48]. Our results
were also consistent with previous findings regarding daytime PBLH; however, the models
performed poorly in nPBLH simulations using both local and non-local schemes (R = ~0.01),
with negligible differences among the three PBL schemes.
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(b) nighttime (21:00–6:00 LST) simulations.

To elucidate vertical characteristics and nPBLH–PM2.5 uncertainties, we calculated
normalized means differences using the formula [NMD = (S − O)/O], where S and O
indicate simulations and observations, respectively. Scatter diagrams of NMD for PBLH–
PM2.5 interactions during the day and night are shown in Figure 7. During the daytime the
NMD of PBLH ranges from −2 to 4 while the NMD of PM2.5 approached zero (Figure 6),
indicating reasonable WRF-Chem performance for daytime PM2.5. The daytime sensitivity
of NMDs of PM2.5 also showed no significant tendencies according to changes in NMDs of
PBLH, with lower R (−0.15) and slope (−0.08) values, indicating again low sensitivity of
PM2.5 to PBLH during the daytime. However, relatively smaller NMD of nPBLH ranges
from −1.2 to 0.8 during the nighttime (Figure 7) due partly to the lower nPBLH than
daytime PBLH, and interactions between nPBLH and nighttime PM2.5 were stronger, with
higher R (−0.39) and slope (−0.96) values between NMDs of PBLH–PM2.5. This indicates
that the simulated PM2.5 is more sensitive to changes in PBLH during the nighttime. Thus,
we conclude that PM2.5 responses to changes in nPBLH were greater, such that nPBLH
underestimation could create bias in the peak concentrations of PM2.5, as seen on May 19,
20, 29, and 30 (Figure 5). Additional detailed investigations of the relevant characteristics
are needed.
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Recent PM modeling studies have revealed that the increasing NO3
− fraction in

PM2.5 [49] and its vertical mixing process in association with long-range transport phe-
nomena over the Northeast Asia is becoming larger in urban areas [50], and it remains
challenging to model the nocturnal formation of NO3

− in association with the nighttime
heterogeneous chemistry of dinitrogen pentoxide (N2O5) [12–15,51,52]. Thus, more de-
tailed, aggregated nPBLH studies are necessary to reduce model uncertainties and improve
predictions of PM concentrations in urban areas.
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4. Conclusions

PBL height simulation is an important factor in predictions of PM2.5; there is a need
to characterize vertical mixing processes, particularly in the stable atmosphere. In this
study, we performed WRF-Chem simulations using different PBL parameterizations and
explored the uncertainty associated with nPBLH–PM2.5 interactions through comparisons
of the simulations with observations during the KORUS-AQ campaign (1–31 May 2016).
Measurements obtained from AL and WDL, together with WRF-Chem modeling results
for three different PBL parameterization schemes (YSU, MYJ, and ACM2), were used to
explore these interactions and their associated uncertainties.

Our results showed that, despite lower biases in daytime PBLH simulations, both
among experiments and in comparison with observations, there were large discrepancies
in nPBLH simulation results for the nighttime atmosphere. WRF-Chem simulations also
showed low correlation coefficient (R) values (<0.001) for all three PBL experiments at night
during the KORUS-AQ campaign. Nighttime simulations consistently underestimated
observation-based nPBLH by a factor of ~3 during the period because of a shallow nPBLH
that created higher PM2.5 peaks.

Our normalized difference analysis of observations and simulations confirmed that the
sensitivity of lower PBLHs to PM2.5 was greater at night, such that uncertainties in nPBLH
easily led to failure in the prediction of nPM2.5 levels in the nighttime atmosphere. In the
absence of direct evidence or observations to link shallow nPBLH and PM2.5, a thorough
knowledge of nocturnal PBL dynamics from further comparisons of measurements and
simulations is needed to sufficiently improve estimates of PM2.5 concentrations.

We conclude that there is a need to characterize stable atmosphere vertical mixing pro-
cesses, but this characterization depends on an improvement of nPBLH uncertainties that
involves additional observational data and the resolution of limitations within air quality
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models. Therefore, a well-designed nocturnal field experiment is necessary to elucidate the
complexities of key processes that control the nPBLH. Additional model sensitivity studies
should be performed under various atmospheric meteorological conditions to provide a
legitimate and integrative evaluation of nPBLH schemes in urban areas.
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P2 (Gwangjin) and P3 (Jungnang); Table S1: ummary statistics for comparison between WRF-Chem
simulations and observed PBLH at Gwanak (P1), Gwangjin (P2), and Jungnang (P3) and measured
PM2.5 at Seoul-Bulgwang.
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