Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Kerker effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 9980 KiB  
Review
Metasurfaces with Multipolar Resonances and Enhanced Light–Matter Interaction
by Evan Modak Arup, Li Liu, Haben Mekonnen, Dominic Bosomtwi and Viktoriia E. Babicheva
Nanomaterials 2025, 15(7), 477; https://doi.org/10.3390/nano15070477 - 21 Mar 2025
Cited by 3 | Viewed by 2524
Abstract
Metasurfaces, composed of engineered nanoantennas, enable unprecedented control over electromagnetic waves by leveraging multipolar resonances to tailor light–matter interactions. This review explores key physical mechanisms that govern their optical properties, including the role of multipolar resonances in shaping metasurface responses, the emergence of [...] Read more.
Metasurfaces, composed of engineered nanoantennas, enable unprecedented control over electromagnetic waves by leveraging multipolar resonances to tailor light–matter interactions. This review explores key physical mechanisms that govern their optical properties, including the role of multipolar resonances in shaping metasurface responses, the emergence of bound states in the continuum (BICs) that support high-quality factor modes, and the Purcell effect, which enhances spontaneous emission rates at the nanoscale. These effects collectively underpin the design of advanced photonic devices with tailored spectral, angular, and polarization-dependent properties. This review discusses recent advances in metasurfaces and applications based on them, highlighting research that employs full-wave numerical simulations, analytical and semi-analytic techniques, multipolar decomposition, nanofabrication, and experimental characterization to explore the interplay of multipolar resonances, bound and quasi-bound states, and enhanced light–matter interactions. A particular focus is given to metasurface-enhanced photodetectors, where structured nanoantennas improve light absorption, spectral selectivity, and quantum efficiency. By integrating metasurfaces with conventional photodetector architectures, it is possible to enhance responsivity, engineer photocarrier generation rates, and even enable functionalities such as polarization-sensitive detection. The interplay between multipolar resonances, BICs, and emission control mechanisms provides a unified framework for designing next-generation optoelectronic devices. This review consolidates recent progress in these areas, emphasizing the potential of metasurface-based approaches for high-performance sensing, imaging, and energy-harvesting applications. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

16 pages, 3158 KiB  
Article
Resonant Metasurfaces with Van Der Waals Hyperbolic Nanoantennas and Extreme Light Confinement
by Viktoriia E. Babicheva
Nanomaterials 2024, 14(18), 1539; https://doi.org/10.3390/nano14181539 - 23 Sep 2024
Cited by 4 | Viewed by 1616
Abstract
This work reports on a metasurface based on optical nanoantennas made of van der Waals material hexagonal boron nitride. The optical nanoantenna made of hyperbolic material was shown to support strong localized resonant modes stemming from the propagating high-k waves in the hyperbolic [...] Read more.
This work reports on a metasurface based on optical nanoantennas made of van der Waals material hexagonal boron nitride. The optical nanoantenna made of hyperbolic material was shown to support strong localized resonant modes stemming from the propagating high-k waves in the hyperbolic material. An analytical approach was used to determine the mode profile and type of cuboid nanoantenna resonances. An electric quadrupolar mode was demonstrated to be associated with a resonant magnetic response of the nanoantenna, which resembles the induction of resonant magnetic modes in high-refractive-index nanoantennas. The analytical model accurately predicts the modes of cuboid nanoantennas due to the strong boundary reflections of the high-k waves, a capability that does not extend to plasmonic or high-refractive-index nanoantennas, where the imperfect reflection and leakage of the mode from the cavity complicate the analysis. In the reported metasurface, excitations of the multipolar resonant modes are accompanied by directional scattering and a decrease in the metasurface reflectance to zero, which is manifested as the resonant Kerker effect. Van der Waals nanoantennas are envisioned to support localized resonances and can become an important functional element of metasurfaces and transdimensional photonic components. By designing efficient subwavelength scatterers with high-quality-factor resonances, this work demonstrates that this type of nanoantenna made of naturally occurring hyperbolic material is a viable substitute for plasmonic and all-dielectric nanoantennas in developing ultra-compact photonic components. Full article
(This article belongs to the Special Issue Advances in Photonic Metasurfaces and Metastructures)
Show Figures

Figure 1

15 pages, 2911 KiB  
Article
Beyond Conventional Sensing: Hybrid Plasmonic Metasurfaces and Bound States in the Continuum
by Dominic Bosomtwi and Viktoriia E. Babicheva
Nanomaterials 2023, 13(7), 1261; https://doi.org/10.3390/nano13071261 - 3 Apr 2023
Cited by 17 | Viewed by 3730
Abstract
Fano resonances result from the strong coupling and interference between a broad background state and a narrow, almost discrete state, leading to the emergence of asymmetric scattering spectral profiles. Under certain conditions, Fano resonances can experience a collapse of their width due to [...] Read more.
Fano resonances result from the strong coupling and interference between a broad background state and a narrow, almost discrete state, leading to the emergence of asymmetric scattering spectral profiles. Under certain conditions, Fano resonances can experience a collapse of their width due to the destructive interference of strongly coupled modes, resulting in the formation of bound states in the continuum (BIC). In such cases, the modes are simultaneously localized in the nanostructure and coexist with radiating waves, leading to an increase in the quality factor, which is virtually unlimited. In this work, we report on the design of a layered hybrid plasmonic-dielectric metasurface that facilitates strong mode coupling and the formation of BIC, resulting in resonances with a high quality factor. We demonstrate the possibility of controlling Fano resonances and tuning Rabi splitting using the nanoantenna dimensions. We also experimentally demonstrate the generalized Kerker effect in a binary arrangement of silicon nanodisks, which allows for the tuning of the collective modes and creates new photonic functionalities and improved sensing capabilities. Our findings have promising implications for developing plasmonic sensors that leverage strong light-matter interactions in hybrid metasurfaces. Full article
(This article belongs to the Special Issue Nanostructure-Based Plasmonic Sensing and Devices)
Show Figures

Figure 1

12 pages, 3327 KiB  
Article
Highly Unidirectional Radiation Enhancement Based on a Hybrid Multilayer Dimer
by Dengchao Huang, Shilin Liu and Kang Yang
Nanomaterials 2022, 12(4), 710; https://doi.org/10.3390/nano12040710 - 21 Feb 2022
Cited by 1 | Viewed by 2104
Abstract
Dimers made of plasmonic particles support strong field enhancements but suffer from large absorption losses, while low-loss dielectric dimers are limited by relatively weak optical confinement. Hybrid dimers could utilize the advantages of both worlds. Here, we propose a hybrid nanoantenna that contains [...] Read more.
Dimers made of plasmonic particles support strong field enhancements but suffer from large absorption losses, while low-loss dielectric dimers are limited by relatively weak optical confinement. Hybrid dimers could utilize the advantages of both worlds. Here, we propose a hybrid nanoantenna that contains a dimer of core-dual shell nanoparticles known as the metal–dielectric–metal (MDM) structure. We discovered that the hybrid dimer sustained unidirectional forward scattering, which resulted in a nearly ideal Kerker condition in the frequency close to the resonance peak of the dimer due to enhancing the amplitude of the induced high-order electric multiples in the gap and effectively superimposing them with magnetic ones, which respond to the excitation of the plane wave in the dielectric layer of the dimer. Furthermore, when an electric quantum emitter is coupled to the dimer, our study shows that the optimal hybrid dimer simultaneously possesses high radiation directivity and low-loss features, which illustrates a back-to-front ratio of radiation 53 times higher than that of the pure dielectric dimer and an average radiation efficiency 80% higher than that of the pure metallic dimer. In addition, the unique structures of the hybrid hexamer direct almost decrease 75% of the radiation beamwidth, hence heightening the directivity of the nanoantenna based on a hybrid dimer. Full article
Show Figures

Figure 1

9 pages, 1965 KiB  
Article
Broadband Active Control of Transverse Scattering from All-Dielectric Nanoparticle
by Huiwen Yu, Hongjia Zhu, Jinyang Li, Zhaolong Cao and Huanjun Chen
Crystals 2021, 11(8), 920; https://doi.org/10.3390/cryst11080920 - 7 Aug 2021
Cited by 2 | Viewed by 2492
Abstract
Steering electromagnetic scattering by subwavelength objects is usually accompanied by the excitation of electric and magnetic modes. The Kerker effect, which relies on the precise overlapping between electric and magnetic multipoles, is a potential approach to address this challenge. However, fundamental limitations on [...] Read more.
Steering electromagnetic scattering by subwavelength objects is usually accompanied by the excitation of electric and magnetic modes. The Kerker effect, which relies on the precise overlapping between electric and magnetic multipoles, is a potential approach to address this challenge. However, fundamental limitations on the reconfigurability and tunability challenge their future implementation in practical applications. Here, we demonstrate a design approach by applying coherent control to a silicon nanodisk. By utilizing an experimentally feasible two-wave excitation, this coherent light-by-light control enables a highly reconfigurable, broadband, and tunable transverse scattering, extending the feasibility of unidirectional scattering in various practical scenarios, including on-chip integrations and optical communications. Full article
(This article belongs to the Special Issue Advances in Polaritons)
Show Figures

Graphical abstract

10 pages, 2855 KiB  
Article
Enhancement of Optical Chirality Using Metasurfaces for Enantiomer-Selective Molecular Sensing
by Sangtae Jeon and Soo Jin Kim
Appl. Sci. 2021, 11(7), 2989; https://doi.org/10.3390/app11072989 - 26 Mar 2021
Cited by 6 | Viewed by 4003
Abstract
Circular dichroism (CD) is a physical property observed in chiral molecules by inducing the difference of absorption between left- and right-handed circularly polarized light (CPL). Circular dichroism spectroscopy is widely used in the field of chemistry and biology to distinguish the enantiomers, which [...] Read more.
Circular dichroism (CD) is a physical property observed in chiral molecules by inducing the difference of absorption between left- and right-handed circularly polarized light (CPL). Circular dichroism spectroscopy is widely used in the field of chemistry and biology to distinguish the enantiomers, which typically show either positive or severe side effects in biological applications depending on the molecular structures’ chirality. To effectively detect the chirality of molecules, diverse designs of nanostructured platforms are proposed based on optical resonances that can enhance the optical chirality and amplify the signal of circular dichroism. However, the underlying physics between the optical chirality and the resonance in a nanostructure is largely unexplored, and thus designing rules for optimal chiral detection is still elusive. Here, we carry out an in-depth analysis of chiral enhancement (C enhancement) in nanostructured surfaces to find the relationship between optical resonances and chirality. Based on the relations, we optimize the nanostructured metasurface to induce effective chiral detection of enantiomers for diverse conditions of molecule distribution. We believe that the proposed designing rules and physics pave the important pathway to enhance the optical chirality for effective circular dichroism spectroscopy. Full article
(This article belongs to the Special Issue Photonics in BioMedical Progress)
Show Figures

Figure 1

Back to TopTop