Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = Jmax–N

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6047 KB  
Article
Response of Photosynthesis and Chlorophyll Fluorescence to Nitrogen Changes in Rice with Different Nitrogen Use Efficiencies
by Zexin Qi, Chen Xu, Rui Tang, Qiang Zhang, Wenzheng Sun, Chenglong Guan, Ye Wang, Mengru Zhang, Jiale Ding, Yuankai Zhang, Hong Yang, Ying Yang, Xiaolong Liu, Zhian Zhang and Fenglou Ling
Plants 2025, 14(10), 1465; https://doi.org/10.3390/plants14101465 - 14 May 2025
Viewed by 1421
Abstract
Nitrogen is a key element in promoting crop growth and development and improving photosynthesis. This study aimed to study the response of two rice genotypes to the restoration of N supply after varying periods of N deficiency. We used the low-nitrogen-tolerant rice Jijing [...] Read more.
Nitrogen is a key element in promoting crop growth and development and improving photosynthesis. This study aimed to study the response of two rice genotypes to the restoration of N supply after varying periods of N deficiency. We used the low-nitrogen-tolerant rice Jijing 88 (JJ 88) and the nitrogen-sensitive rice variety Xinong 999 (XN 999) as test materials. The results of this study indicated that, compared to XN 999, JJ 88 has a higher content of the photosynthetic pigments. Photosynthesis in JJ 88 has strong adaptability under low-nitrogen conditions. Upon an increase in the nitrogen supply level, the maximum regeneration rate of ribulose biphosphate (RuBP, Jmax) and the maximum carboxylation rate of RuBP (Vcmax) in JJ 88 showed a relatively large increase. The chlorophyll fluorescence parameters, including the effective quantum yield of photosystem II (ΦPSII), the efficiency of excitation capture by open PSII centers (Fv′/Fm′), photochemical fluorescence quenching (qP), and the electron transfer rate (ETR) decreased slightly, while the non-photochemical fluorescence quenching (NPQ) increased slightly. Under low-nitrogen conditions, low-nitrogen-tolerant rice varieties maintain reasonable growth during the seedling stage. With an increase in the nitrogen supply level, the dry matter accumulation, photosynthetic pigment content, photosynthesis, and electron transfer ability of plants improve, but not to normal nitrogen supply levels. However, compared with XN 999, JJ 88 has a more proactive recovery ability. The research results provide valuable guidance for the breeding of nitrogen-efficient rice varieties and nitrogen fertilizer management. Full article
(This article belongs to the Special Issue Advances in Nitrogen Nutrition in Plants)
Show Figures

Figure 1

14 pages, 1973 KB  
Article
Response of Photosynthetic Capacity to Nitrogen Addition in Larix gmelinii Trees in Different Crown Classes
by Ruijia Cai, Jingjing Wang, Rui Zhang, Qinggui Wang, Chuankuan Wang and Xiankui Quan
Plants 2025, 14(7), 1056; https://doi.org/10.3390/plants14071056 - 28 Mar 2025
Viewed by 537
Abstract
We explored the response of photosynthetic capacity to nitrogen (N) deposition among Larix gmelinii trees in different crown classes (e.g., suppressed, intermediate, and dominant trees) in a 12-year field experiment in a forest in the Greater Khingan Mountains in Northeast China. Four N-addition [...] Read more.
We explored the response of photosynthetic capacity to nitrogen (N) deposition among Larix gmelinii trees in different crown classes (e.g., suppressed, intermediate, and dominant trees) in a 12-year field experiment in a forest in the Greater Khingan Mountains in Northeast China. Four N-addition treatments were established: control (CK), low N (LN), medium N (MN), and high N (HN) (0, 25, 50, and 75 kg N·ha−1·year−1, respectively). Photosynthesis and its influencing factors were measured in 2023. Nitrogen addition significantly increased the maximum net photosynthetic rate (Pmax), maximum carboxylation rate (Vcmax), and maximum electron transport rate (Jmax) of suppressed and intermediate trees. The suppressed trees showed maximum Pmax and Vcmax in MN and HN, and maximum Jmax in HN. The intermediate trees showed maximum Pmax, Vcmax, and Jmax in MN. For dominant trees, Pmax was increased in LN and MN and decreased in HN, and Vcmax was increased by N addition and peaked in MN. Nitrogen addition significantly increased the leaf N content (Nmass), chlorophyll content (Chlm), the ratio of N to phosphorous (N:P), and photosynthetic enzyme activities in all crown classes. Nmass had significant nonlinear relationships with Pmax, Vcmax, and Jmax. Enzyme activity and Chlm positively affected the photosynthetic capacity of suppressed and intermediate trees, and N:P negatively affected the photosynthetic capacity of dominant trees. The promoting effect of N addition on photosynthetic capacity was stronger in suppressed and intermediate trees than in dominant trees. Therefore, the crown class should be considered when studying the effect of N deposition on the boreal forests. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

17 pages, 3639 KB  
Article
Decreased Photosynthetic Efficiency in Nicotiana tabacum L. under Transient Heat Stress
by Renan Falcioni, Marcelo Luiz Chicati, Roney Berti de Oliveira, Werner Camargos Antunes, Mirza Hasanuzzaman, José A. M. Demattê and Marcos Rafael Nanni
Plants 2024, 13(3), 395; https://doi.org/10.3390/plants13030395 - 29 Jan 2024
Cited by 7 | Viewed by 2877
Abstract
Heat stress is an abiotic factor that affects the photosynthetic parameters of plants. In this study, we examined the photosynthetic mechanisms underlying the rapid response of tobacco plants to heat stress in a controlled environment. To evaluate transient heat stress conditions, changes in [...] Read more.
Heat stress is an abiotic factor that affects the photosynthetic parameters of plants. In this study, we examined the photosynthetic mechanisms underlying the rapid response of tobacco plants to heat stress in a controlled environment. To evaluate transient heat stress conditions, changes in photochemical, carboxylative, and fluorescence efficiencies were measured using an infrared gas analyser (IRGA Licor 6800) coupled with chlorophyll a fluorescence measurements. Our findings indicated that significant disruptions in the photosynthetic machinery occurred at 45 °C for 6 h following transient heat treatment, as explained by 76.2% in the principal component analysis. The photosynthetic mechanism analysis revealed that the dark respiration rate (Rd and Rd*CO2) increased, indicating a reduced potential for carbon fixation during plant growth and development. When the light compensation point (LCP) increased as the light saturation point (LSP) decreased, this indicated potential damage to the photosystem membrane of the thylakoids. Other photosynthetic parameters, such as AMAX, VCMAX, JMAX, and ΦCO2, also decreased, compromising both photochemical and carboxylative efficiencies in the Calvin–Benson cycle. The energy dissipation mechanism, as indicated by the NPQ, qN, and thermal values, suggested that a photoprotective strategy may have been employed. However, the observed transitory damage was a result of disruption of the electron transport rate (ETR) between the PSII and PSI photosystems, which was initially caused by high temperatures. Our study highlights the impact of rapid temperature changes on plant physiology and the potential acclimatisation mechanisms under rapid heat stress. Future research should focus on exploring the adaptive mechanisms involved in distinguishing mutants to improve crop resilience against environmental stressors. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology—2nd Edition)
Show Figures

Figure 1

11 pages, 1692 KB  
Article
Differential Effect of Free-Air CO2 Enrichment (FACE) in Different Organs and Growth Stages of Two Cultivars of Durum Wheat
by Angie L. Gámez, Xue Han and Iker Aranjuelo
Plants 2023, 12(3), 686; https://doi.org/10.3390/plants12030686 - 3 Feb 2023
Cited by 5 | Viewed by 2435
Abstract
Wheat is a target crop within the food security context. The responses of wheat plants under elevated concentrations of CO2 (e[CO2]) have been previously studied; however, few of these studies have evaluated several organs at different phenological stages [...] Read more.
Wheat is a target crop within the food security context. The responses of wheat plants under elevated concentrations of CO2 (e[CO2]) have been previously studied; however, few of these studies have evaluated several organs at different phenological stages simultaneously under free-air CO2 enrichment (FACE) conditions. The main objective of this study was to evaluate the effect of e[CO2] in two cultivars of wheat (Triumph and Norin), analyzed at three phenological stages (elongation, anthesis, and maturation) and in different organs at each stage, under FACE conditions. Agronomic, biomass, physiological, and carbon (C) and nitrogen (N) dynamics were examined in both ambient CO2 (a[CO2]) fixed at 415 µmol mol−1 CO2 and e[CO2] at 550 µmol mol−1 CO2. We found minimal effect of e[CO2] compared to a[CO2] on agronomic and biomass parameters. Also, while exposure to 550 µmol mol−1 CO2 increased the photosynthetic rate of CO2 assimilation (An), the current study showed a diminishment in the maximum carboxylation (Vc,max) and maximum electron transport (Jmax) under e[CO2] conditions compared to a[CO2] at physiological level in both cultivars. However, even if no significant differences were detected between cultivars on photosynthetic machinery, differential responses between cultivars were detected in C and N dynamics at e[CO2]. Triumph showed starch accumulation in most organs during anthesis and maturation, but a decline in N content was observed. Contrastingly, in Norin, a decrease in starch content during the three stages and an increase in N content was observed. The amino acid content decreased in grain and shells at maturation in both cultivars, which might indicate a minimal translocation from source to sink organs. These results suggest a greater acclimation to e[CO2] enrichment in Triumph than Norin, because both the elongation stage and e[CO2] modified the source–sink relationship. According to the differences between cultivars, future studies should be performed to test genetic variation under FACE technology and explore the potential of cultivars to cope with projected climate scenarios. Full article
(This article belongs to the Special Issue Plant Responses to Future Climate Scenarios)
Show Figures

Figure 1

14 pages, 2774 KB  
Article
Synergetic Effects of Mixed-Metal Polyoxometalates@Carbon-Based Composites as Electrocatalysts for the Oxygen Reduction and the Oxygen Evolution Reactions
by Inês S. Marques, Bruno Jarrais, Israël-Martyr Mbomekallé, Anne-Lucie Teillout, Pedro de Oliveira, Cristina Freire and Diana M. Fernandes
Catalysts 2022, 12(4), 440; https://doi.org/10.3390/catal12040440 - 14 Apr 2022
Cited by 12 | Viewed by 3663
Abstract
The smart choice of polyoxometalates (POMs) and the design of POM@carbon-based composites are promising tools for producing active electrocatalysts for both the oxygen reduction (ORR) and the oxygen evolution reactions (OER). Hence, herein, we report the preparation, characterization and application of three composites [...] Read more.
The smart choice of polyoxometalates (POMs) and the design of POM@carbon-based composites are promising tools for producing active electrocatalysts for both the oxygen reduction (ORR) and the oxygen evolution reactions (OER). Hence, herein, we report the preparation, characterization and application of three composites based on doped, multi-walled carbon nanotubes (MWCNT_N6) and three different POMs (Na12[(FeOH2)2Fe2(As2W15O56)2]·54H2O, Na12[(NiOH2)2Ni2(As2W15O56)2]·54H2O and Na14[(FeOH2)2Ni2(As2W15O56)2]·55H2O) as ORR and OER electrocatalysts in alkaline medium (pH = 13). Overall, the three POM@MWCNT_N6 composites showed good ORR performance with onset potentials between 0.80 and 0.81 V vs. RHE and diffusion-limiting current densities ranging from −3.19 to −3.66 mA cm−2. Fe4@MWCNT_N6 and Fe2Ni2@MWCNT_N6 also showed good stability after 12 h (84% and 80% of initial current). The number of electrons transferred per O2 molecule was close to three, suggesting a mixed regime. Moreover, the Fe2Ni2@MWCNT_N6 presented remarkable OER performance with an overpotential of 0.36 V vs. RHE (for j = 10 mA cm−2), a jmax close to 135 mA cm−2 and fast kinetics with a Tafel slope of 45 mV dec−1. More importantly, this electrocatalyst outperformed not only most POM@carbon-based composites reported so far but also the state-of-the-art RuO2 electrocatalyst. Thus, this work represents a step forward towards bifunctional electrocatalysts using less expensive materials. Full article
Show Figures

Figure 1

20 pages, 6904 KB  
Article
Cobalt Phosphotungstate-Based Composites as Bifunctional Electrocatalysts for Oxygen Reactions
by Ndrina Limani, Inês S. Marques, Bruno Jarrais, António J. S. Fernandes, Cristina Freire and Diana M. Fernandes
Catalysts 2022, 12(4), 357; https://doi.org/10.3390/catal12040357 - 23 Mar 2022
Cited by 14 | Viewed by 3821
Abstract
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are key reactions in energy-converting systems, such as fuel cells (FCs) and water-splitting (WS) devices. However, the current use of expensive Pt-based electrocatalysts for ORR and IrO2 and RuO2 for OER [...] Read more.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are key reactions in energy-converting systems, such as fuel cells (FCs) and water-splitting (WS) devices. However, the current use of expensive Pt-based electrocatalysts for ORR and IrO2 and RuO2 for OER is still a major drawback for the economic viability of these clean energy technologies. Thus, there is an incessant search for low-cost and efficient electrocatalysts (ECs). Hence, herein, we report the preparation, characterization (Raman, XPS, and SEM), and application of four composites based on doped-carbon materials (CM) and cobalt phosphotungstate (MWCNT_N8_Co4, GF_N8_Co4, GF_ND8_Co4, and GF_NS8_Co4) as ORR and OER electrocatalysts in alkaline medium (pH = 13). Structural characterization confirmed the successful carbon materials doping with N and/or N, S, and the incorporation of the cobalt phosphotungstate. Overall, all composites showed good ORR performance with onset potentials ranging from 0.83 to 0.85 V vs. RHE, excellent tolerance to methanol crossover with current retentions between 88 and 90%, and good stability after 20,000 s at E = 0.55 V vs. RHE (73% to 82% of initial current). In addition, the number of electrons transferred per O2 molecule was close to four, suggesting selectivity to the direct process. Moreover, these composites also presented excellent OER performance with GF_N8_Co4 showing an overpotential of 0.34 V vs. RHE (for j = 10 mA cm−2) and jmax close to 70 mA cm−2. More importantly, this electrocatalyst outperformed state-of-the-art IrO2 electrocatalyst. Thus, this work represents a step forward toward bifunctional electrocatalysts using less expensive materials. Full article
(This article belongs to the Special Issue Catalytic Sustainable Processes Using Carbonaceous Materials)
Show Figures

Graphical abstract

17 pages, 2317 KB  
Article
Transport Turnover Rates for Human OCT2 and MATE1 Expressed in Chinese Hamster Ovary Cells
by Xiaohong Zhang and Stephen H. Wright
Int. J. Mol. Sci. 2022, 23(3), 1472; https://doi.org/10.3390/ijms23031472 - 27 Jan 2022
Cited by 10 | Viewed by 2961
Abstract
MATE1 (multidrug and toxin extruder 1) and OCT2 (organic cation transporter 2) play critical roles in organic cation excretion by the human kidney. The transporter turnover rate (TOR) is relevant to understanding both their transport mechanisms and interpreting the in vitro–in vivo extrapolation [...] Read more.
MATE1 (multidrug and toxin extruder 1) and OCT2 (organic cation transporter 2) play critical roles in organic cation excretion by the human kidney. The transporter turnover rate (TOR) is relevant to understanding both their transport mechanisms and interpreting the in vitro–in vivo extrapolation (IVIVE) required for physiologically-based pharmacokinetic (PBPK) modeling. Here, we use a quantitative western blot method to determine TORs for MATE1 and OCT2 proteins expressed in CHO cells. MATE1 and OCT2, each with a C-terminal V-5 epitope tag, were cell surface biotinylated and the amount of cell surface MATE1 and OCT2 protein was quantified by western analysis, using standard curves for the V5 epitope. Cell surface MATE1 and OCT2 protein represented 25% and 24%, respectively, of the total expression of these proteins in CHO cells. The number of cell surface transporters was ~55 fmol cm−2 for MATE1 and ~510 fmol cm−2 for OCT2. Dividing these values into the different Jmax values for transport of MPP, metformin, and atenolol mediated by MATE1 and OCT2 resulted in calculated TOR values (±SE, n = 4) of 84.0 ± 22.0 s−1 and 2.9 ± 0.6 s−1; metformin, 461.0 ± 121.0 s−1 and 12.6 ± 2.4 s−1; atenolol, 118.0 ± 31.0 s−1, respectively. These values are consistent with the TOR values determined for a variety of exchangers (NHEs), cotransporters (SGLTs, Lac permease), and uniporters (GLUTs, ENTs). Full article
Show Figures

Figure 1

15 pages, 718 KB  
Article
The Effect of Low Irradiance on Leaf Nitrogen Allocation and Mesophyll Conductance to CO2 in Seedlings of Four Tree Species in Subtropical China
by Jingchao Tang, Baodi Sun, Ruimei Cheng, Zuomin Shi, Da Luo, Shirong Liu and Mauro Centritto
Plants 2021, 10(10), 2213; https://doi.org/10.3390/plants10102213 - 18 Oct 2021
Cited by 9 | Viewed by 3921
Abstract
Low light intensity can lead to a decrease in photosynthetic capacity. However, could N-fixing species with higher leaf N contents mitigate the effects of low light? Here, we exposed seedlings of Dalbergia odorifera and Erythrophleum fordii (N-fixing trees), and Castanopsis hystrix and Betula [...] Read more.
Low light intensity can lead to a decrease in photosynthetic capacity. However, could N-fixing species with higher leaf N contents mitigate the effects of low light? Here, we exposed seedlings of Dalbergia odorifera and Erythrophleum fordii (N-fixing trees), and Castanopsis hystrix and Betula alnoides (non-N-fixing trees) to three irradiance treatments (100%, 40%, and 10% sunlight) to investigate the effects of low irradiance on leaf structure, leaf N allocation strategy, and photosynthetic physiological parameters in the seedlings. Low irradiance decreased the leaf mass per unit area, leaf N content per unit area (Narea), maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), light compensation point, and light saturation point, and increased the N allocation proportion of light-harvesting components in all species. The studied tree seedlings changed their leaf structures, leaf N allocation strategy, and photosynthetic physiological parameters to adapt to low-light environments. N-fixing plants had a higher photosynthesis rate, Narea, Vcmax, and Jmax than non-N-fixing species under low irradiance and had a greater advantage in maintaining their photosynthetic rate under low-radiation conditions, such as under an understory canopy, in a forest gap, or when mixed with other species. Full article
(This article belongs to the Collection Forest Environment and Ecology)
Show Figures

Figure 1

16 pages, 1464 KB  
Article
Species-Specific Nitrogen Resorption Efficiency in Quercus mongolica and Acer mono in Response to Elevated CO2 and Soil N Deficiency
by Hiroyuki Tobita, Mitsutoshi Kitao, Akira Uemura and Hajime Utsugi
Forests 2021, 12(8), 1034; https://doi.org/10.3390/f12081034 - 4 Aug 2021
Cited by 1 | Viewed by 2375
Abstract
To test the effects of elevated CO2 and soil N deficiency on N resorption efficiency (NRE) from senescing leaves in two non-N2-fixing deciduous broadleaved tree species, Japanese oak (Quercus mongolica var. grosseserrata Blume) and Painted maple (Acer mono [...] Read more.
To test the effects of elevated CO2 and soil N deficiency on N resorption efficiency (NRE) from senescing leaves in two non-N2-fixing deciduous broadleaved tree species, Japanese oak (Quercus mongolica var. grosseserrata Blume) and Painted maple (Acer mono Maxim. var. glabrum (Lév. Et Van’t.) Hara), potted seedlings were grown in a natural daylight phytotron with either ambient or elevated CO2 conditions (36 Pa and 72 Pa CO2) and with two levels of N (52.5 and 5.25 mg N pot−1 week−1 for high N and low N, respectively). We examined the N content (Nmass) of mature and senescent leaves, as well as photosynthesis and the growth of plants, and calculated both the mass-based NRE (NREmass) and leaf area-based NRE (NREarea). In both species, the Nmass of mature leaves decreased with high CO2 and low N, whereas the leaf mass per area (LMA) increased under elevated CO2, regardless of N treatments. In Q. mongolica, both the maximum rate of carboxylation (Vcmax) and the maximum electron transport rate (Jmax) were reduced by elevated CO2 and low N, but Vcmax exhibited an interactive effect of N and CO2 treatments. However, in A. mono, both the Vcmax and Jmax decreased under elevated CO2, regardless of N treatments. The partitioning of N for the photosynthetic function within leaves was also significantly decreased by elevated CO2 in both species and increased under low N in A. mono. The Nmass of senesced leaves decreased under low N in both species and exhibited an increase (Q. mongolica) or no effect (A. mono) by elevated CO2. The NREarea of Q. mongolica was affected by CO2 and N treatments, with a decrease under elevated CO2 compared to ambient CO2 and under low N compared to high N. The NREarea of A. mono was also affected by CO2 and N treatments and decreased under elevated CO2; however, unlike in the case of Q. mongolica, it increased under low N. We speculate that these interspecific differences in the responses of leaf N allocation, indicated by the photosynthetic (Vcmax and Jmax) and morphological (LMA) responses to elevated CO2, may have affected the NRE during defoliation under high CO2 and soil N-deficient conditions. Full article
(This article belongs to the Special Issue Ecophysiology of Forest Succession under Changing Environment)
Show Figures

Figure 1

14 pages, 2493 KB  
Article
Effects of Throughfall Exclusion on Photosynthetic Traits in Mature Japanese Cedar (Cryptomeria japonica (L. f.) D. Don.)
by Tanaka Kenzo, Yuta Inoue, Masatake G. Araki, Tatsuro Kawasaki, Satoshi Kitaoka, Tatsuya Tsurita, Tadashi Sakata and Satoshi Saito
Forests 2021, 12(8), 971; https://doi.org/10.3390/f12080971 - 22 Jul 2021
Cited by 9 | Viewed by 3337
Abstract
As climate change progresses, it is becoming more crucial to understand how timber species respond to increased drought frequency and severity. Photosynthetic traits in a 40-year-old clonal Japanese cedar (Cryptomeria japonica) plantation were assessed under artificial drought stress using a roof [...] Read more.
As climate change progresses, it is becoming more crucial to understand how timber species respond to increased drought frequency and severity. Photosynthetic traits in a 40-year-old clonal Japanese cedar (Cryptomeria japonica) plantation were assessed under artificial drought stress using a roof to exclude rainfall and a control with no exclusion. C. japonica is a commercial tree that is native to Japan and has high growth on mesic sites. The maximum carboxylation rate (Vcmax), maximum electron transfer rate (Jmax), and dark respiration rate (Rd) in current-year shoots in the upper canopy were determined from spring to autumn over two growing seasons. In addition, the photosynthetic rate at light saturation (Pmax), stomatal conductance (gs), and intrinsic water use efficiency (WUEi) were measured in the morning and afternoon during the same period. Leaf mass per unit area (LMA) and nitrogen concentration (N) were also measured. The values of Vcmax, Jmax, Rd, N, and LMA did not differ between the two plots. By contrast, significantly lower Pmax and gs and higher WUEi were found in the drought plot, and the reduction in Pmax was accompanied by low gs values. Midday depressions in Pmax and gs were more pronounced in the drought plot relative to the control and were related to higher WUEi. Under drought conditions, mature Japanese cedar experienced little change in photosynthetic capacity, foliar N, or LMA, but they did tend to close the stomata to regulate transpiration, thus avoiding drought-induced damage to the photosynthetic machinery and improving WUEi. Full article
(This article belongs to the Special Issue Ecophysiology of Forest Succession under Changing Environment)
Show Figures

Figure 1

14 pages, 2041 KB  
Article
Photosynthesis Traits of Pioneer Broadleaves Species from Tailing Dumps in Călimani Mountains (Eastern Carpathians)
by Andrei Popa and Ionel Popa
Forests 2021, 12(6), 658; https://doi.org/10.3390/f12060658 - 22 May 2021
Cited by 5 | Viewed by 2491
Abstract
The reforestation and stable ecological restoration of tailings dumps resulting from surface mining activities in the Călimani Mountains represent an ongoing environmental challenge. To assess the suitability of different tree species for restoration efforts, photosynthetic traits were monitored in four broadleaf pioneer species—green [...] Read more.
The reforestation and stable ecological restoration of tailings dumps resulting from surface mining activities in the Călimani Mountains represent an ongoing environmental challenge. To assess the suitability of different tree species for restoration efforts, photosynthetic traits were monitored in four broadleaf pioneer species—green alder (Alnus alnobetula (Ehrh.) K. Koch), aspen (Populus tremula L.), silver birch (Betula pendula Roth.), and goat willow (Salix caprea L.)—that naturally colonized the tailings dumps. Green alder and birch had the highest photosynthetic rate, followed by aspen and goat willow. Water use efficiency parameters (WUE and iWUE) were the highest for green alder and the lowest for birch, with intermediary values for aspen and goat willow. Green alder also exhibited the highest carboxylation efficiency, followed by birch. During the growing season, net assimilation and carboxylation efficiency exhibited a maximum in late July and a minimum in late June. The key limitation parameters of the photosynthetic process derived from the FvCB model (Vcmax and Jmax) were the highest for green alder and exhibited a maximum in late July, regardless of the species. Based on photosynthetic traits, the green alder—a woody N2-fixing shrub—is the most well-adapted and photosynthetically efficient species that naturally colonized the tailings dumps in the Călimani Mountains. Full article
(This article belongs to the Special Issue Climate Change and Air Pollution Effects on Forest Ecosystems)
Show Figures

Graphical abstract

14 pages, 2673 KB  
Article
Differences in Characteristics of Photosynthesis and Nitrogen Utilization in Leaves of the Black Locust (Robinia pseudoacacia L.) According to Leaf Position
by Dongsu Choi, Woongsoon Jang, Hiroto Toda and Masato Yoshikawa
Forests 2021, 12(3), 348; https://doi.org/10.3390/f12030348 - 16 Mar 2021
Cited by 11 | Viewed by 4064
Abstract
Robinia pseudoacacia L. has been widely planted worldwide for a variety of purposes, but it is a nonindigenous species currently invading the central part of Japanese river terraces. To understand and control this invasion, we investigated how this species invests nitrogen resources in [...] Read more.
Robinia pseudoacacia L. has been widely planted worldwide for a variety of purposes, but it is a nonindigenous species currently invading the central part of Japanese river terraces. To understand and control this invasion, we investigated how this species invests nitrogen resources in different functions depending on the leaf location, and how these resources are used in physiological reactions such as photosynthesis. The Tama river terrace was examined in Tokyo, Japan. The leaf nitrogen (N) concentration, chlorophyll (Chl) concentration, Chl a/b ratio, leaf mass per unit area (LMA) and ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCo) concentration were all significantly lower in shade leaves than in leaves exposed to the sun. Conversely, the net photosynthetic rate in saturated light conditions (Pmax), the net photosynthetic rate under enhanced CO2 concentration and light saturation (Amax), the maximum carboxylation rate of RuBisCo (Vcmax) and the maximum rate of electron transport driving RUBP regeneration (Jmax) were all significantly lower in shade leaves than in leaves exposed to the sun. We also found that RuBisCo/N and Chl/N were significantly less in shade leaves, and values of Jmax/N, Vcmax/N less in shade leaves than in sun leaves, but not significantly. Allocation of nitrogen in leaves to photosynthetic proteins, RuBisCo (NR) was broadly less in shade leaves, and NL (light-harvesting complex: LHC, photosystem I and II: PSI and PSII) and NE (electron transport) were also lower. The N remaining was much greater in shade leaves than in sun leaves. We suggest that N remobilization from RuBisCo is more efficient than remobilization from proteins of NE, and from NL. This study shows that R. pseudoacacia has an enhanced ability to adapt to environmental changes via characteristic changes in N allocation trade-offs and physiological traits in its sun and shade leaves. Full article
(This article belongs to the Special Issue Ecophysiology of Forest Succession under Changing Environment)
Show Figures

Figure 1

20 pages, 2330 KB  
Article
Relationships between Leaf Anatomy and Physiological Functioning of Southern US Oak Species Differing in Flood Tolerance
by Heidi Renninger, Tyler Durbin, Austin Gentry and Zeima Kassahun
Forests 2020, 11(1), 73; https://doi.org/10.3390/f11010073 - 7 Jan 2020
Cited by 7 | Viewed by 4053
Abstract
Research Highlights: Bottomland oaks receive less attention than upland species, however their adaptations to flooding and summer water stress will extend our understanding of the oak genus and links between physiology and leaf anatomy. Background and objectives: Determining links between leaf anatomy and [...] Read more.
Research Highlights: Bottomland oaks receive less attention than upland species, however their adaptations to flooding and summer water stress will extend our understanding of the oak genus and links between physiology and leaf anatomy. Background and objectives: Determining links between leaf anatomy and physiology can aid in parameterizing dynamic global vegetation models for oak systems, therefore we sought to (1) compare leaf anatomic, nutrient, and physiological parameters for bottomland oaks differing in flood tolerance, (2) determine correlations across parameters and determine which anatomic and nutrient parameters best predict photosynthetic capacity metrics, and (3) compare these data with reported literature values for oaks across the globe. Materials and Methods: We measured CO2 response curves (A/Ci) on leaves from Nuttall, Shumard, swamp chestnut, water and white oak seedlings planted in the Southeastern United States (US) and estimated stomatal size and density, epidermal cell size, vein density, leaf mass per area (LMA) and nitrogen (N) concentrations. Principal component analysis among these leaf anatomic and nutrient parameters was used to determine the best predictors of photosynthetic parameters including Rubisco-limited carboxylation rate (VCmax) and electron transport limited carboxylation rate (Jmax). Results: We found that although physiological parameters were similar, flood-tolerant oaks had lower leaf N concentrations and larger, more infrequent stomata than less flood-tolerant species. Leaf epidermal properties were correlated with N concentrations and a principal component capturing this correlation as well as principal components correlated with mesophyll conductance and leaf carbon concentrations were found to best explain variation in VCmax and Jmax. These Southeastern US oaks exhibited similar leaf physiological parameters and LMA as oaks reported in the literature but differed in leaf epidermal and stomatal properties as well as leaf N concentrations increasing the reported range of these parameters within the oak genus. Conclusions: Therefore, leaf anatomy and nutrient parameters as opposed to physiology differed across flood tolerance and between bottomland oaks and broader literature values. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

7 pages, 1880 KB  
Article
A Study of Efficiency Droop Phenomenon in GaN-Based Laser Diodes before Lasing
by Mei-Xin Feng, Qian Sun, Jian-Ping Liu, Zeng-Cheng Li, Yu Zhou, Shu-Ming Zhang and Hui Yang
Materials 2017, 10(5), 482; https://doi.org/10.3390/ma10050482 - 30 Apr 2017
Cited by 9 | Viewed by 5430
Abstract
Carrier recombination behavior in c-plane GaN-based laser diodes (LDs) is numerically investigated by using the commercial software LASTIP. It is found that efficiency droop phenomenon does exist in GaN-based LDs before lasing, which is confirmed by experimental results. However, the current [...] Read more.
Carrier recombination behavior in c-plane GaN-based laser diodes (LDs) is numerically investigated by using the commercial software LASTIP. It is found that efficiency droop phenomenon does exist in GaN-based LDs before lasing, which is confirmed by experimental results. However, the current density corresponding to the peak efficiency of GaN-based LDs before lasing, Jmax, is nearly 40 A/cm2, which is much lower than that reported by other studies. The reported Jmax, measured from the cavity facet side is modulated by the absorption of quantum wells, which shifts the Jmax to a higher value. In addition, the currents due to various recombinations are calculated. It is found that Auger recombination affects the threshold current greatly, but it only plays a small role at high current injection levels. Full article
(This article belongs to the Special Issue Wide Bandgap Semiconductors: Growth, Properties and Applications)
Show Figures

Figure 1

Back to TopTop