Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = JinHua pig

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2812 KiB  
Article
Statistical Analysis of Reproductive Traits in Jinwu Pig and Identification of Genome-Wide Association Loci
by Wenduo Chen, Ayong Zhao, Jianzhi Pan, Kai Tan, Zhiwei Zhu, Liang Zhang, Fuxian Yu, Renhu Liu, Liepeng Zhong and Jing Huang
Genes 2025, 16(5), 550; https://doi.org/10.3390/genes16050550 - 30 Apr 2025
Viewed by 568
Abstract
Background: The Jinwu pig is a novel breed created by crossbreeding Jinhua and Duroc pigs, displaying superior meat quality, strong adaptability to coarse feed, high production performance, and a rapid growth rate. However, research on its reproductive traits and genomic characteristics has not [...] Read more.
Background: The Jinwu pig is a novel breed created by crossbreeding Jinhua and Duroc pigs, displaying superior meat quality, strong adaptability to coarse feed, high production performance, and a rapid growth rate. However, research on its reproductive traits and genomic characteristics has not been systematically reported. Methods: In this study, we investigated the genetic basis of reproductive traits in Jinwu pigs us-ing a genome-wide association study. We analyzed 2831 breeding records from 516 Jinwu sows to evaluate the effects of fixed factors (farrowing season, parity, and mated boar) on six reproductive traits: the total number of births (TNB), number born alive (NBA), number of healthy offspring produced (NHOP), weak litter size (WLS), number of stillbirths (NS), and number of mummies (NM). Results: A total of 771 genome-wide significant single-nucleotide polymorphisms (SNPs) and ten potential candidate genes associated with pig reproductive traits were identified: VOPP1, PGAM2, TNS3, LRFN5, ORC1, CC2D1B, ZFYYE9, TUT4, DCN, and FEZF1. TT-genotype-carrier individuals of the pleiotropic SNP rs326174997 exhibited significantly higher TNB, NBA, and NHOP trait-related phenotypic values. Conclusions: These findings provide a foundation for the reproductive breeding of Jinwu pigs and offer new insights into molecular genetic breeding in pigs. Full article
(This article belongs to the Special Issue Advances in Pig Genetic and Genomic Breeding)
Show Figures

Figure 1

19 pages, 5067 KiB  
Article
Disrupted Microbiota of Colon Results in Worse Immunity and Metabolism in Low-Birth-Weight Jinhua Newborn Piglets
by Jiaheng Li, Zeou Wei, Fangfang Lou, Xiaojun Zhang, Jiujun Duan, Chengzeng Luo, Xujin Hu, Pingguang Tu, Lei Liu, Ruqing Zhong, Liang Chen, Xizhong Du and Hongfu Zhang
Microorganisms 2024, 12(7), 1371; https://doi.org/10.3390/microorganisms12071371 - 4 Jul 2024
Cited by 1 | Viewed by 4255
Abstract
The Jinhua pig is well known in China due to its delicious meat. However, because of large litter size, low birth weight always happens. This experiment used this breed as a model to research bacterial evidence leading to growth restriction and provide a [...] Read more.
The Jinhua pig is well known in China due to its delicious meat. However, because of large litter size, low birth weight always happens. This experiment used this breed as a model to research bacterial evidence leading to growth restriction and provide a possible solution linked to probiotics. In this experiment, the differences in organs indexes, colonic morphology, short chain fatty acid (SCFA) concentrations, microbiome, and transcriptome were detected between piglets in the standard-birth-weight group (SG) and low-birth-weight group (LG) to find potential evidence leading to low birth weight. We found that LG piglets had a lower liver index (p < 0.05), deeper colonic crypt depth (p < 0.05), fewer goblet cells (p < 0.05), and more inflammatory factor infiltration. In addition, differentially expressed genes (DEGs) were mainly enriched in B-cell immunity and glucose metabolism, and LG piglets had lower concentrations of SCFAs, especially butyrate and isobutyrate (p < 0.05). Finally, most of the significantly differentially abundant microbes were fewer in LG piglets, which affected DEG expressions and SCFA concentrations further resulting in worse energy metabolism and immunity. In conclusion, colonic disrupted microbiota may cause worse glucose metabolism, immunity, and SCFA production in LG piglets, and beneficial microbes colonized in SG piglets may benefit these harmful changes. Full article
(This article belongs to the Special Issue Nutritional Regulation on Gut Microbiota, 2nd Edition)
Show Figures

Figure 1

16 pages, 8545 KiB  
Article
The Influence of Increasing Roughage Content in the Diet on the Growth Performance and Intestinal Flora of Jinwu and Duroc × Landrace × Yorkshire Pigs
by Gaili Xu, Jing Huang, Wenduo Chen, Ayong Zhao, Jianzhi Pan and Fuxian Yu
Animals 2024, 14(13), 1913; https://doi.org/10.3390/ani14131913 - 28 Jun 2024
Cited by 3 | Viewed by 1422
Abstract
The Jinwu pig (JW) is a hybrid breed originating from the Chinese indigenous Jinhua pig and Duroc pig, boasting excellent meat quality and fast growth rates. This study aimed to verify the tolerance of JW to roughage, similar to most Chinese indigenous pigs. [...] Read more.
The Jinwu pig (JW) is a hybrid breed originating from the Chinese indigenous Jinhua pig and Duroc pig, boasting excellent meat quality and fast growth rates. This study aimed to verify the tolerance of JW to roughage, similar to most Chinese indigenous pigs. In this research, two types of feed were provided to JW and Duroc × Landrace × Yorkshire pigs (DLY): a basal diet and a roughage diet (increasing the rice bran and wheat bran content in the basal diet from 23% to 40%) for a 65-day experimental period. The roughage diet showed an increasing trend in the feed conversion ratio (F/G), with a 17.61% increase in feed consumption per unit weight gain for DLY, while the increase for JW was only 4.26%. A 16S rRNA sequencing analysis revealed that the roughage diet increased the relative abundance of beneficial bacteria, such as Lactobacillus and Clostridium, while reducing the relative abundance of some potential pathogens, thus improving the gut microbiota environment. After being fed with the roughage diet, the abundance of bacterial genera, such as Treponema, Terrisporobacter, Coprococcus, and Ruminococcaceae, which aid in the digestion and utilization of dietary fiber, were significantly higher in Jinwu compared to DLY, indicating that these bacterial genera confer Jinwu with a higher tolerance to roughage than DLY. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

18 pages, 5398 KiB  
Article
Insights into the Protein Differentiation Mechanism between Jinhua Fatty Ham and Lean Ham through Label-Free Proteomics
by Qicheng Huang, Ruoyu Xie, Xiaoli Wu, Ke Zhao, Huanhuan Li, Honggang Tang, Hongying Du, Xinyan Peng, Lihong Chen and Jin Zhang
Foods 2023, 12(23), 4348; https://doi.org/10.3390/foods12234348 - 1 Dec 2023
Cited by 2 | Viewed by 1867
Abstract
Jinhua lean ham (LH), a dry-cured ham made from the defatted hind legs of pigs, has become increasingly popular among consumers with health concerns. However, the influence of fat removal on the quality of Jinhua ham is still not fully understood. Therefore, a [...] Read more.
Jinhua lean ham (LH), a dry-cured ham made from the defatted hind legs of pigs, has become increasingly popular among consumers with health concerns. However, the influence of fat removal on the quality of Jinhua ham is still not fully understood. Therefore, a label-free proteomics strategy was used to explore the protein differential profile between Jinhua fatty ham (FH) and lean ham (LH). Results showed that 179 differential proteins (DPs) were detected, including 82 up-regulated and 97 down-regulated DPs in LH vs. FH, among which actin, myosin, tropomyosin, aspartate aminotransferase, pyruvate carboxylase, and glucose-6-phosphate isomerase were considered the key DPs. GO analysis suggested that DPs were mainly involved in binding, catalytic activity, cellular process, and metabolic process, among which catalytic activity was significantly up-regulated in LH. Moreover, the main KEGG-enriched pathways of FH focused on glycogen metabolism, mainly including the TCA cycle, pyruvate metabolism, and glycolysis/gluconeogenesis. However, amino acid metabolism and oxidative phosphorylation were the main metabolic pathways in LH. From the protein differentiation perspective, fat removal significantly promoted protein degradation, amino acid metabolism, and the oxidative phosphorylation process. These findings could help us to understand the effects of fat removal on the nutritional metabolism of Jinhua hams and provide theoretical supports for developing healthier low-fat meat products. Full article
Show Figures

Figure 1

13 pages, 3273 KiB  
Article
The Role of SOCS3 in Regulating Meat Quality in Jinhua Pigs
by Fen Wu, Zitao Chen, Zhenyang Zhang, Zhen Wang, Zhe Zhang, Qishan Wang and Yuchun Pan
Int. J. Mol. Sci. 2023, 24(13), 10593; https://doi.org/10.3390/ijms241310593 - 24 Jun 2023
Cited by 6 | Viewed by 2468
Abstract
Meat quality is an important economic trait that influences the development of the pig industry. Skeletal muscle development and glycolytic potential (GP) are two crucial aspects that significantly impact meat quality. It has been reported that abnormal skeletal muscle development and high glycogen [...] Read more.
Meat quality is an important economic trait that influences the development of the pig industry. Skeletal muscle development and glycolytic potential (GP) are two crucial aspects that significantly impact meat quality. It has been reported that abnormal skeletal muscle development and high glycogen content results in low meat quality. However, the genetic mechanisms underlying these factors are still unclear. Compared with intensive pig breeds, Chinese indigenous pig breeds, such as the Jinhua pig, express superior meat quality characteristics. The differences in the meat quality traits between Jinhua and intensive pig breeds make them suitable for uncovering the genetic mechanisms that regulate meat quality traits. In this study, the Jinhua pig breed and five intensive pig breeds, including Duroc, Landrace, Yorkshire, Berkshire, and Pietrain pig breeds, were selected as experimental materials. First, the FST and XP-EHH methods were used to screen the selective signatures on the genome in the Jinhua population. Then, combined with RNA-Seq data, the study further confirmed that SOCS3 could be a key candidate gene that influences meat quality by mediating myoblast proliferation and glycometabolism because of the down-regulated expression of SOCS3 in Jinhua pigs compared with Landrace pigs. Finally, through SOCS3 knockout (KO) and overexpression (OE) experiments in mouse C2C12 cells, the results showed that SOCS3 regulated the cell proliferation of myoblasts. Moreover, SOCS3 is involved in regulating glucose uptake by the IRS1/PI3K/AKT signaling pathway. Overall, these findings provide a basis for the genetic improvement of meat quality traits in the pig industry. Full article
(This article belongs to the Special Issue Animal Genomes and Epigenomes)
Show Figures

Figure 1

16 pages, 6859 KiB  
Article
Genome-Wide Re-Sequencing Data Reveals the Population Structure and Selection Signatures of Tunchang Pigs in China
by Feifan Wang, Zonglin Zha, Yingzhi He, Jie Li, Ziqi Zhong, Qian Xiao and Zhen Tan
Animals 2023, 13(11), 1835; https://doi.org/10.3390/ani13111835 - 1 Jun 2023
Cited by 9 | Viewed by 2773
Abstract
Tunchang pig is one population of Hainan pig in the Hainan Province of China, with the characteristics of delicious meat, strong adaptability, and high resistance to diseases. To explore the genetic diversity and population structure of Tunchang pigs and uncover their germplasm characteristics, [...] Read more.
Tunchang pig is one population of Hainan pig in the Hainan Province of China, with the characteristics of delicious meat, strong adaptability, and high resistance to diseases. To explore the genetic diversity and population structure of Tunchang pigs and uncover their germplasm characteristics, 10 unrelated Tunchang pigs were re-sequenced using the Illumina NovaSeq 150 bp paired-end platform with an average depth of 10×. Sequencing data from 36 individuals of 7 other pig breeds (including 4 local Chinese pig breeds (5 Jinhua, 5 Meishan, 5 Rongchang, and 6 Wuzhishan), and 3 commonly used commercial pig breeds (5 Duorc, 5 Landrace, and 5 Large White)) were downloaded from the NCBI public database. After analysis of genetic diversity and population structure, it has been found that compared to commercial pigs, Tunchang pigs have higher genetic diversity and are genetically close to native Chinese breeds. Three methods, FST, θπ, and XP-EHH, were used to detect selection signals for three breeds of pigs: Tunchang, Duroc, and Landrace. A total of 2117 significantly selected regions and 201 candidate genes were screened. Gene enrichment analysis showed that candidate genes were mainly associated with good adaptability, disease resistance, and lipid metabolism traits. Finally, further screening was conducted to identify potential candidate genes related to phenotypic traits, including meat quality (SELENOV, CBR4, TNNT1, TNNT3, VPS13A, PLD3, SRFBP1, and SSPN), immune regulation (CD48, FBL, PTPRH, GNA14, LOX, SLAMF6, CALCOCO1, IRGC, and ZNF667), growth and development (SYT5, PRX, PPP1R12C, and SMG9), reproduction (LGALS13 and EPG5), vision (SLC9A8 and KCNV2), energy metabolism (ATP5G2), cell migration (EPS8L1), and olfaction (GRK3). In summary, our research results provide a genomic overview of the genetic variation, genetic diversity, and population structure of the Tunchang pig population, which will be valuable for breeding and conservation of Tunchang pigs in the future. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

19 pages, 4085 KiB  
Article
Screening of Bacteria Inhibiting Clostridium perfringens and Assessment of Their Beneficial Effects In Vitro and In Vivo with Whole Genome Sequencing Analysis
by Zipeng Jiang, Weifa Su, Mingzhi Yang, Wentao Li, Tao Gong, Yu Zhang, Chaoyue Wen, Xinxia Wang, Yizhen Wang, Mingliang Jin and Zeqing Lu
Microorganisms 2022, 10(10), 2056; https://doi.org/10.3390/microorganisms10102056 - 18 Oct 2022
Cited by 8 | Viewed by 3389
Abstract
Various countries and organizations call for banning the use of antibiotic growth promoters (AGPs) as prophylaxis and for growth promotion in the livestock industry. Hence, seeking a substitute for antibiotics is strongly required by the livestock industry to maintain the productivity level and [...] Read more.
Various countries and organizations call for banning the use of antibiotic growth promoters (AGPs) as prophylaxis and for growth promotion in the livestock industry. Hence, seeking a substitute for antibiotics is strongly required by the livestock industry to maintain the productivity level and profits. Probiotics could represent one viable solution because of their beneficial effects on host health and maintaining the intestinal microbiota balance. In the present study, we aimed to isolate bacterial strains with probiotics properties from JinHua pig (a Chinese native pig breed) gastrointestinal tract that have antagonistic activity against to common disease-causing bacteria on farms. The four most potent strains were isolated (PP31, BA11, BA40, BV5) by the agar well diffusion method and further characterized by acid, bile salt, trypsin tolerance, whole genome sequencing (WGS), and suppressing Clostridium perfringens adhesion to IPEC-J2 cells. According to these results, BA40 had the highest number and variety of probiotic secondary metabolic secretion genes and capacity to exclude the attachment of Clostridium perfringens to IPEC-J2 cells as same as PB6. The animal experiment in vivo illustrated that BA40 and PB6 could reduce the phenomenon induced by Clostridium perfringens challenge of body weight loss, colon length decrease, pro-inflammatory cytokine increase, and Clostridium perfringens and Escherichia coli increase. The present study provides evidence that BA40 could represent a novel probiotic candidate as PB6, which exhibited some probiotic features and mitigated the burden of Clostridium perfringens associated gut disease. Full article
Show Figures

Figure 1

12 pages, 1577 KiB  
Article
Identification of Enterotype and Its Effects on Intestinal Butyrate Production in Pigs
by E Xu, Hua Yang, Minmin Ren, Yuanxia Wang, Mingfei Xiao, Qingsong Tang, Min Zhu and Yingping Xiao
Animals 2021, 11(3), 730; https://doi.org/10.3390/ani11030730 - 8 Mar 2021
Cited by 22 | Viewed by 3409
Abstract
Gut microbiota is thought to play a crucial role in nutrient digestion for pigs, especially in processing indigestible polysaccharides in the diets to produce short-chain fatty acids (SCFAs). However, the link between microbiota community structure and phenotypic performances are poorly understood. In the [...] Read more.
Gut microbiota is thought to play a crucial role in nutrient digestion for pigs, especially in processing indigestible polysaccharides in the diets to produce short-chain fatty acids (SCFAs). However, the link between microbiota community structure and phenotypic performances are poorly understood. In the present study, the fecal samples of 105 Jinhua pigs at 105 days of age were clustered into three enterotypes (ETs, ET1, ET2, and ET3) that are subpopulations of distinct bacterial community composition by using 16S rRNA high throughput sequencing. The α-diversity indices (the OTU number and Shannon index) were significantly different among the ETs (p < 0.001). At the genus level, the ET1 group was over-represented by Lactobacillus (17.49%) and Clostridium sensu stricto 1 (11.78%), the ET2 group was over-represented by Clostridium sensu stricto 1 (17.49%) and Bifidobacterium (11.78%), and the ET3 group was over-represented by Bacteroides (18.17%). Significant differences in the fecal contents of butyrate were observed among ETs, with the highest level detected in ET3 and the lowest in ET2 (p < 0.05). Consistently, more copies of the terminal genes for butyrate synthesis, butyrate kinase (Buk) and butyryl coenzyme A (CoA): acetate CoA transferase (But) were detected by qPCR in the fecal samples of the ET3 group as compared to other two groups (p < 0.05). In addition, of the two genes, But was demonstrated to be more relevant to the butyrate content (R = 0.7464) than Buk (R = 0.4905) by correlation analysis. In addition, based on the taxonomic analysis, we found that Faecalibacterium was the most relevant butyrate-producing genera with fecal butyrate contents in Jinhua pigs, followed by Butyricicoccus, Eubacterium, Butyricimonas, Blautia, and Anaerostipes, all of which showed significantly higher richness in ET3 than as compared to ET1 and ET2 (p < 0.05). Collectively, this work presents a first overview of the enterotypes clustering in Jinhua pigs and will help to unravel the functional implications of ETs for the pig’s phenotypic performance and nutrient metabolism. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

15 pages, 1724 KiB  
Article
Long Noncoding RNA and mRNA Expression Profiles in the Thyroid Gland of Two Phenotypically Extreme Pig Breeds Using Ribo-Zero RNA Sequencing
by Yifei Shen, Haiguang Mao, Minjie Huang, Lixing Chen, Jiucheng Chen, Zhaowei Cai, Ying Wang and Ningying Xu
Genes 2016, 7(7), 34; https://doi.org/10.3390/genes7070034 - 9 Jul 2016
Cited by 30 | Viewed by 6864
Abstract
The thyroid gland is an important endocrine organ modulating development, growth, and metabolism, mainly by controlling the synthesis and secretion of thyroid hormones (THs). However, little is known about the pig thyroid transcriptome. Long non-coding RNAs (lncRNAs) regulate gene expression and play critical [...] Read more.
The thyroid gland is an important endocrine organ modulating development, growth, and metabolism, mainly by controlling the synthesis and secretion of thyroid hormones (THs). However, little is known about the pig thyroid transcriptome. Long non-coding RNAs (lncRNAs) regulate gene expression and play critical roles in many cellular processes. Yorkshire pigs have a higher growth rate but lower fat deposition than that of Jinhua pigs, and thus, these species are ideal models for studying growth and lipid metabolism. This study revealed higher levels of THs in the serum of Yorkshire pigs than in the serum of Jinhua pigs. By using Ribo-zero RNA sequencing—which can capture both polyA and non-polyA transcripts—the thyroid transcriptome of both breeds were analyzed and 22,435 known mRNAs were found to be expressed in the pig thyroid. In addition, 1189 novel mRNAs and 1018 candidate lncRNA transcripts were detected. Multiple TH-synthesis-related genes were identified among the 455 differentially-expressed known mRNAs, 37 novel mRNAs, and 52 lncRNA transcripts. Bioinformatics analysis revealed that differentially-expressed genes were enriched in the microtubule-based process, which contributes to THs secretion. Moreover, integrating analysis predicted 13 potential lncRNA-mRNA gene pairs. These data expanded the repertoire of porcine lncRNAs and mRNAs and contribute to understanding the possible molecular mechanisms involved in animal growth and lipid metabolism. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 4241 KiB  
Article
MicroRNA Expression Profiling of Lactating Mammary Gland in Divergent Phenotype Swine Breeds
by Jing Peng, Jun-Sheng Zhao, Yi-Fei Shen, Hai-Guang Mao and Ning-Ying Xu
Int. J. Mol. Sci. 2015, 16(1), 1448-1465; https://doi.org/10.3390/ijms16011448 - 8 Jan 2015
Cited by 28 | Viewed by 7091
Abstract
MicroRNA (miRNA) plays a key role in development and specific biological processes, such as cell proliferation, differentiation, and apoptosis. Extensive studies of mammary miRNAs have been performed in different species and tissues. However, little is known about porcine mammary gland miRNAs. In this [...] Read more.
MicroRNA (miRNA) plays a key role in development and specific biological processes, such as cell proliferation, differentiation, and apoptosis. Extensive studies of mammary miRNAs have been performed in different species and tissues. However, little is known about porcine mammary gland miRNAs. In this study, we report the identification and characterization of miRNAs in the lactating mammary gland in two distinct pig breeds, Jinhua and Yorkshire. Many miRNAs were detected as significantly differentially expressed between the two libraries. Among the differentially expressed miRNAs, many are known to be related to mammary gland development and lactation by interacting with putative target genes in previous studies. These findings suggest that miRNA expression patterns may contribute significantly to target mRNA regulation and influence mammary gland development and peak lactation performance. The data we obtained provide useful information about the roles of miRNAs in the biological processes of lactation and the mechanisms of target gene expression and regulation. Full article
(This article belongs to the Collection Regulation by Non-coding RNAs)
Show Figures

Graphical abstract

Back to TopTop